Advertisement

Heuristics approach to speeding up saliency detection

  • Omprakash S. Rajankar
  • Uttam D. Kolekar
  • Sanjay N. Talbar
Original Paper

Abstract

Visual saliency is the distinct perceptual quality which makes some subsets in an image stand out from their neighbours and immediately grab human attention in the early vision. Visual saliency is useful in locating the region of interest. Quick visual saliency detection is desirable in an application that uses the region of interest. The paper embeds a new heuristic module in the original hypercomplex Fourier transform based model. It allows generating saliency maps falling in the search path only, and hence reduces the number of intermediate saliency maps from N to average value \(log_2 N+1\). Ultimately, speed up the original saliency model significantly.

Keywords

Bisection search Heuristics HFT Spectral scale-space reduction Visual saliency 

References

  1. 1.
    Achanta, R., Süsstrunk, S.: Saliency detection for content-aware image resizing. In: Proceedings—International Conference on Image Processing, ICIP, pp. 1005–1008. IEEE (2009).  https://doi.org/10.1109/ICIP.2009.5413815
  2. 2.
    Achantay, R., Hemamiz, S., Estraday, F., Süsstrunky, S.: Frequency-tuned salient region detection. In: 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2009, Ic, pp. 1597–1604 (2009).  https://doi.org/10.1109/CVPRW.2009.5206596
  3. 3.
    Aggarwal, U., Trocan, M., Coudoux, F.X.: An HVS-inspired video deinterlacer based on visual saliency. Vietnam J. Comput. Sci. 4(1), 61–69 (2017).  https://doi.org/10.1007/s40595-016-0081-1 CrossRefGoogle Scholar
  4. 4.
    Borji, A., Itti, L.: State-of-the-art in visual attention modeling. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 185–207 (2013).  https://doi.org/10.1109/TPAMI.2012.89 CrossRefGoogle Scholar
  5. 5.
    Bylinskii, Z., Judd, T., Durand, F., Oliva, A., Torralba, A.: Mit saliency benchmark (2015). http://saliency.mit.edu/results_mit300.html
  6. 6.
    Cai, S., Huang, J., Zeng, D., Ding, X., Paisley, J.: Menet: a metric expression network for salient object segmentation. CoRR arXiv:1805.05638 (2018)
  7. 7.
    Cetin, A.E., Davey, M.K., Cuce, H.I., Castellari, A.E., Mulayim, A.: Method of compression for wide angle digital video (2011). US Patent 7,894,531Google Scholar
  8. 8.
    Guan, S.: Fabric defect delaminating detection based on visual saliency in HSV color space. J. Text. Inst. (2018).  https://doi.org/10.1080/00405000.2018.1434112 CrossRefGoogle Scholar
  9. 9.
    Guo, C., Ma, Q., Zhang, L.: Spatio-temporal saliency detection using phase spectrum of quaternion fourier transform. In: 26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 220, pp. 1–8. IEEE (2008).  https://doi.org/10.1109/CVPR.2008.4587715
  10. 10.
    Hou, Q., Cheng, M., Hu, X., Borji, A., Tu, Z., Torr, P.H.S.: Deeply supervised salient object detection with short connections. CoRR arXiv:1611.04849 (2016)
  11. 11.
    Hou, X., Zhang, L.: Saliency detection: a spectral residual approach. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 800, pp. 1–8. IEEE (2007).  https://doi.org/10.1109/CVPR.2007.383267
  12. 12.
    Huang, T., Tian, Y., Li, J., Yu, H., Tiejun, H., Yonghong, T., Jia, L.I., Haonan, Y.U.: Salient region detection and segmentation for general object recognition and image understanding. Sci. China Inf. Sci. 54(12), 2461–2470 (2011).  https://doi.org/10.1007/s11432-011-4487-1 MathSciNetCrossRefGoogle Scholar
  13. 13.
    Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998).  https://doi.org/10.1109/34.730558 CrossRefGoogle Scholar
  14. 14.
    Khan, R.A., Meyer, A., Konik, H., Bouakaz, S.: Saliency-based framework for facial expression recognition. Front. Comput. Sci. (2018).  https://doi.org/10.1007/s11704-017-6114-9 CrossRefGoogle Scholar
  15. 15.
    Li, J., Levine, M.D., An, X., Xu, X., He, H.: Visual saliency based on scale-space analysis in the frequency domain. IEEE Trans. Pattern Anal. Mach. Intell. 35(4), 996–1010 (2013).  https://doi.org/10.1109/TPAMI.2012.147 CrossRefGoogle Scholar
  16. 16.
    Li, J., Levine, M.D., An, X., Xu, X., He, H.: Visual saliency based on scale-space analysis in the frequency domain. IEEE Trans. Pattern Anal. Mach. Intell. 35(4), 996–1010 (2013)CrossRefGoogle Scholar
  17. 17.
    Liu, N., Han, J.: A deep spatial contextual long-term recurrent convolutional network for saliency detection. CoRR arXiv:1610.01708 (2016)
  18. 18.
    Mishra, A.K., Aloimonos, Y., Cheong, L.F., Kassim, A.A.: Active visual segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 34(4), 639–53 (2012).  https://doi.org/10.1109/TPAMI.2011.171 CrossRefGoogle Scholar
  19. 19.
    Nevin, J.A.: Signal detection theory and operant behavior. A review of David M. Green and John A. Swets’ Signal detection theory and psychophysics1. J. Exp. Anal. Behav. 12(3), 475–480 (1969).  https://doi.org/10.1901/jeab.1969.12-475 CrossRefGoogle Scholar
  20. 20.
    Pan, J., McGuinness, K., Sayrol, E., O’Connor, N.E., Giró i Nieto, X.: Shallow and deep convolutional networks for saliency prediction. CoRR arXiv:1603.00845 (2016)
  21. 21.
    Peters, R.J., Iyer, A., Itti, L., Koch, C.: Components of bottom-up gaze allocation in natural images. Vis. Res. 45(18), 2397–416 (2005).  https://doi.org/10.1016/j.visres.2005.03.019 CrossRefGoogle Scholar
  22. 22.
    Rajashekar, U., Bovik, A.C., Cormack, L.K.: Visual search in noise: revealing the influence of structural cues by gaze-contingent classification image analysis. J. Vis. 6(4), 379–386 (2006).  https://doi.org/10.1167/6.4.7 CrossRefGoogle Scholar
  23. 23.
    Rajankar, O.S., Kolekar, U.D.: Scale space reduction with interpolation to speed up visual saliency detection. Int. J. Image Graph. Signal Process. 7(8), 58–65 (2015).  https://doi.org/10.5815/ijigsp.2015.08.07 CrossRefGoogle Scholar
  24. 24.
    Rajankar, O.S., Kolekar, U.D.: Fast visual saliency detection with bisection search to scale selection. In: 2015 International Conference on Pervasive Computing (ICPC), pp. 1–6. IEEE (2015).  https://doi.org/10.1109/PERVASIVE.2015.7087200
  25. 25.
    Shi, J., Yan, Q., Xu, L., Jia, J.: Hierarchical image saliency detection on extended CSSD. IEEE Trans. Pattern Anal. Mach. Intell. 38(4), 717–729 (2016).  https://doi.org/10.1109/TPAMI.2015.2465960 CrossRefGoogle Scholar
  26. 26.
    Stella, X.Y., Lisin, D.A.: Image compression based on visual saliency at individual scales. Adv. Vis. Comput. Lect. Notes Comput. Sci. 5875, 157–166 (2009).  https://doi.org/10.1007/978-3-642-10331-5_15 CrossRefGoogle Scholar
  27. 27.
    Veit, T., Tarel, J.P., Nicolle, P., Charbonnier, P.: Evaluation of road marking feature extraction. In: IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, pp. 174–181. IEEE (2008).  https://doi.org/10.1109/ITSC.2008.4732564
  28. 28.
    Wang, L., Gao, C., Jian, J., Tang, L., Liu, J.: Semantic feature based multi-spectral saliency detection. Multimed. Tools Appl. 77(3), 3387–3403 (2018).  https://doi.org/10.1007/s11042-017-5152-5 CrossRefGoogle Scholar
  29. 29.
    Yan, Q., Xu, L., Shi, J., Jia, J.: Hierarchical saliency detection. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1155–1162. IEEE (2013).  https://doi.org/10.1109/CVPR.2013.153

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Omprakash S. Rajankar
    • 1
  • Uttam D. Kolekar
    • 2
  • Sanjay N. Talbar
    • 3
  1. 1.Department of E&Tc EngineeringNBN Sinhgad School of EngineeringPuneIndia
  2. 2.Department of E&Tc EngineeringA. P. Shah Institute of TechnologyThaneIndia
  3. 3.Department of E&Tc EngineeringS. G. G. S. Institute of Engineering and TechnologyNandedIndia

Personalised recommendations