Signal, Image and Video Processing

, Volume 13, Issue 1, pp 199–207 | Cite as

Multiframe image superresolution based on cepstral analysis

  • Pravin B. ChopadeEmail author
  • Pradeep M. Patil
Original Paper


In this paper, multiframe image superresolution algorithm based on cepstral analysis has been proposed. The multiple low-resolution images are registered by calculating the translational, rotational and scaling shifts in the cepstral domain. The registered multiple low-resolution images are projected onto a high-resolution grid to generate a new high-resolution image. The projection of low-resolution image causes blurred and jaggy edges in the high-resolution image. To de-blur and regularize high-resolution image, Wiener filter is designed using point spread function computed with the help of the shaken length N and shaken angle θ that are obtained from cepstral analysis. Performance of the proposed algorithm is evaluated using different benchmark images in terms of subjective results and objective parameters such as PSNR and computation time. The subjective and objective results show the superiority of the proposed algorithm over the conventional and state-of-the-art superresolution techniques.


Image Superresolution Cepstrum Image registration Image de-blurring and regularization 


  1. 1.
    Park, S.C., Park, M.K., Kang, M.G.: Superresolution image reconstruction: a technical overview. IEEE Signal Process. Mag. 3, 21–36 (2003)CrossRefGoogle Scholar
  2. 2.
    Chan, J.C.W., Ma, J., Canters, F.: A comparison of superresolution reconstruction methods for multi-angle CHRIS/PROBA images. Proc. SPIE Remote Sens. Int. Soc. Opt. Photon. 7109, 710904-1–710904-11 (2008)Google Scholar
  3. 3.
    Ma, J., Chan, J.C.W.: Superresolution reconstruction of hyperspectral remote sensing imagery using constrained optimization of POCS. In: Proceeding of IEEE Geoscience Remote Sensing Symposium (IGARSS), pp. 7271–7274 (2012)Google Scholar
  4. 4.
    Li, H., Lam, K.-M.: Guided iterative back-projection scheme for single-image super-resolution. In: IEEE Global High Tech Congress on Electronics (GHTCE), pp. 175–180 (2013)Google Scholar
  5. 5.
    Zomet, A., Rav-Acha, A., Peleg, S.: Robust super-resolution. In: Proceedings International Conference on Computer Vision and Pattern Recognition (CVPR) (2001)Google Scholar
  6. 6.
    Pham, T.Q., van Vliet, L.J., Schutte, K.: Robust fusion of irregularly sampled data using adaptive normalized convolution. EURASIP J. Appl. Signal Process. 2006, Article ID 83268 (2006)Google Scholar
  7. 7.
    Cheng, M.-H., Lin, N.-W., Hwang, K.-S., Jeng, J.-H.: Fast Video Super-Resolution Using Artificial Neural Networks. In: IEEE, IET International Symposium on Communication Systems, Networks and Digital Signal Processing (2012)Google Scholar
  8. 8.
    Lu, X., Yuan, Y., Yan, P.: Alternatively constrained dictionary learning for image superresolution. IEEE Trans. Cybern. 44(3), 366–377 (2014)CrossRefGoogle Scholar
  9. 9.
    Bayir, O., Eksioglu, E.M.: Analysis Sparsity Based Single Image Superresolution. In: IEEE Conference on Signal Processing and Communication Application, pp. 977–980 (2016)Google Scholar
  10. 10.
    Haris, M., Watanabe, T., Fan, L., Widyanto, M.R., Nobuhara, H.: Superresolution for UAV images via adaptive multiple sparse representation and its application to 3-D reconstruction. IEEE Trans. Geosci. Remote Sens. 55, 4047–4058 (2017)CrossRefGoogle Scholar
  11. 11.
    Patel, R.C., Joshi, M.V.: Super-resolution of hyperspectral images: use of optimum wavelet filter coefficients and sparsity regularization. IEEE Trans. Geosci. Remote Sens. 53(4), 1728–1736 (2015)CrossRefGoogle Scholar
  12. 12.
    Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2016)CrossRefGoogle Scholar
  13. 13.
    Kappeler, A., Yoo, S., Dai, Q, Katsaggelos, A.K.: Super-resolution of compressed videos using convolutional neural networks. IEEE Int. Conf. Image Process., pp. 1150–1154 (2016)Google Scholar
  14. 14.
    Cheong, J.Y., Park, I.K.: Deep CNN-based super-resolution using external and internal examples. IEEE Signal Process. Lett. 24, 1070–9908 (2017)CrossRefGoogle Scholar
  15. 15.
    Nazzal, M., Ozkaramanli, H.: Wavelet domain dictionary learning-based single image superresolution. SIViP 9(7), 1491–1501 (2015)CrossRefGoogle Scholar
  16. 16.
    Yue, L., Shen, H., Li, J., Yuan, Q., Zhang, H., Zhang, L.: Image super-resolution: the techniques, applications, and future. Signal Process. 128, 389–408 (2016)CrossRefGoogle Scholar
  17. 17.
    Rom, R.: On the cepstrum of two-dimensional functions. IEEE Trans. Inf. Theory 21, 214–217 (1975)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kedo, K.: Digital Fourier Analysis: Advanced Techniques. Springer, Berlin (2015)Google Scholar
  19. 19.
    Shi, M.: Image Restoration Using the Alternation Direction Method Based on the Gradient Cepstrum Analysis PSF Estimation Strategy. In: Proceeding of the International Conference on Communications, Signal Processing and Systems, pp. 725–732 (2016)Google Scholar
  20. 20.
    Cakir, S., Cetin, A.E.: Mel-cepstral feature extraction methods for image representation. Opt. Eng. 49(9), 097004 (2010)CrossRefGoogle Scholar
  21. 21.
    Kim, C.W., Ansari, R., Cetin, A.E.: A Class of Linear-Phase Regular Biorthogonal Wavelets. In: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing, 1992. ICASSP-92, vol. 4, pp. 673–676 (1992)Google Scholar
  22. 22.
    Narwaria, M., Lin, W., Enis Cetin, A.: Scalable image quality assessment with 2D mel-cepstrum and machine learning approach. Pattern Recogn. 45, 299–313 (2012)CrossRefGoogle Scholar
  23. 23.
    Li, Y.-J., Di, X.-G.: Image Mixed Blur Classification and Parameter Identification Based On Cepstrum Peak Detection. In: 35th Chinese Control Conference (CCC) (2016)Google Scholar
  24. 24.
    Rabiner, L., Juang, B.: Fundamentals of Speech Recognition. Prentice-Hall Inc, Upper Saddle River (1993)Google Scholar
  25. 25.
    Chu, C.-H.: Superresolution Image Reconstruction for Mobile Devices. Springer, Berlin (2012)Google Scholar
  26. 26.
    Rahulkar, A.D., Holambe, R.S.: Half-iris feature extraction and recognition using a new class of biorthogonal triplet half band filter bank and flexible k-out-of-n: a post-classifier. IEEE Trans. Inf. Forensic Secur. 7, 230–240 (2012)CrossRefGoogle Scholar
  27. 27.
    Anbarjafari, G., Demirel, H.: Image superresolution based on interpolation of wavelet domain high frequency subbands and spatial domain input image. IEEE Trans. Image Process. 20(5), 1458–1460 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Patil, B.D., Patwardhan, P.G., Gadre, V.M.: On the design of FIR wavelet filter banks using factorization of a half band polynomial. IEEE Signal Process. Lett. 15, 485–488 (2008)CrossRefGoogle Scholar
  29. 29.
    Ansari, R., Kim, C.W., Dedovic, M.: Structure and design of two-channel filter banks derived from a triplet of halfband filters. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 46(12), 1487–1496 (1999)CrossRefGoogle Scholar
  30. 30.
    Chopade, P.B., Patil, P.M.: Hybrid-thresholding Based Image superresolution technique by the use of triplet half band wavelets. J. Inst. Eng. Ser. B 97(4), 517–523 (2016)CrossRefGoogle Scholar
  31. 31.
    Chopade, P.B., Patil, P.M.: Design of dyadic integer coefficient based biorthogonal wavelet filters for image superresolution using image sub-pixel image. ICTACT J. 4(4), 817–823 (2014)Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.MES’s CoEPuneIndia
  2. 2.JSPM’s JSCOEPuneIndia

Personalised recommendations