Advertisement

Signal, Image and Video Processing

, Volume 13, Issue 1, pp 189–197 | Cite as

Nighttime image enhancement based on image decomposition

  • Xuesong JiangEmail author
  • Hongxun Yao
  • Dilin Liu
Original Paper
  • 107 Downloads

Abstract

Nighttime image captured in low- or non-uniform illumination scene always suffers from the loss of visibility and contains various noise and objectionable artifact. When we enlarge the amplitude of the brightness, the noise and artifact will be amplified as well. Hence, we propose a nighttime image enhancement approach based on image decomposition. We decompose the input image into two components: Structure layer contains main information of the image, and texture layer contains details, noise, and artifacts. We implement an improved retinex image enhancement algorithm to enhance the structure layer. To remain details and suppress noise and artifact in the texture layer, we use mask-weighted least squares method. In the final, we fuse these two components to obtain the result. The experimental results demonstrate that the proposed approach can improve the perceptual quality of nighttime images and suppress noise and artifact without excessive reinforcement.

Keywords

Nighttime image enhancement Image decomposition Noise and artifact suppression Improved retinex algorithm 

References

  1. 1.
    Zhang, S., Lan, X., Yao, H.: A biologically inspired appearance model for robust visual tracking. IEEE Trans. Neural Netw. Learn. Syst. 28, 2357–2370 (2017)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Lan, X., Zhang, S., Yuen, P.C.: Learning common and feature-specific patterns: a novel multiple-sparse-representation-based tracker. IEEE Trans. Image Process. 27, 2022–2037 (2018)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chouhan, R., Biswas, P., Jha, R.K.: Enhancement of low-contrast images by internal noise-induced Fourier coefficient rooting. Int. J. Multimed. Tools Appl. 9, 255–263 (2015)Google Scholar
  4. 4.
    Rao, Y., Chen, L.: A survey of video enhancement techniques. Int. J. Inf. Hiding Multimed Signal Process. 3, 71–99 (2002)Google Scholar
  5. 5.
    Li, B., Wang, S., Geng, Y.: Image enhancement based on retinex and lightness decomposition. In: IEEE International Conference on Image Processing, pp. 3417–3420 (2011)Google Scholar
  6. 6.
    Liu, H., Sun, X., Han, H., Cao, W.: Low-light video image enhancement based on multiscale retinex-like algorithm. In: Chinese Control and Decision Conference, pp. 3712–3715 (2016)Google Scholar
  7. 7.
    Dong, X., Wang, G., Pang, Y., Li, W., Wen, J., Meng, W., Lu, Y.: Fast efficient algorithm for enhancement of low lighting video. In: IEEE International Conference on Multimedia and Expo, pp. 1–6 (2011)Google Scholar
  8. 8.
    Zhang, X., Shen, P., Luo, L., Zhang, L., Song, J.: Enhancement and noise reduction of very low light level images. In: IEEE International Conference on Pattern Recognition, pp. 2034–2037 (2012)Google Scholar
  9. 9.
    Jiang, X., Yao, H., Zhang, S., Lu, X., Zeng, W.: Night video enhancement using improved dark channel prior. In: IEEE International Conference on Image Processing, pp. 553–557 (2013)Google Scholar
  10. 10.
    He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. In: International Conference on Computer Vision and Pattern Recognition pp. 1–8 (2009)Google Scholar
  11. 11.
    Reibel, Y., Jung, M., Bouhifd, M., Cunin, B., Draman, C.: CCD or CMOS camera noise characteristics. Eur. Phys. J. Appl. Phys. 21, 75–80 (2003)CrossRefGoogle Scholar
  12. 12.
    Aujol, J.-F., Gilboa, G., Chan, T., Osher, S.: Structure-texture image decomposition modeling, algorithms, and parameter selection. Int. J. Comput. Vision 67, 111–136 (2006)CrossRefzbMATHGoogle Scholar
  13. 13.
    Min, D., Choi, S., Lu, J., Ham, B., Sohn, K., Do, M.N.: Fast global image smoothing based on weighted least squares. IEEE Trans. Image Process. 23, 5638–5653 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Bhatnagar, G., Liu, Z.: A novel image fusion framework for night-vision navigation and surveillance. Int. J. Signal Image Video Process. 9, 165–175 (2015)CrossRefGoogle Scholar
  15. 15.
    Soumya, T., Thampi, S.M.: Recolorizing dark regions to enhance night surveillance video. Int. J. Multimed. Tools Appl. 76, 1–17 (2016)Google Scholar
  16. 16.
    Soumya, T., Thampi, S.M.: Self-organized night video enhancement for surveillance systems. Int. J. Signal Image Video Process. 11, 57–64 (2017)CrossRefGoogle Scholar
  17. 17.
    Rahman, Z ur, Jobson, D .J., Woodell, G .A.: Retinex processing for automatic image enhancement. Int. J. Electron. Imag. 13, 100–110 (2004)CrossRefGoogle Scholar
  18. 18.
    Yang, Q., Ahuja, N., Tan, K.-H.: Constant time median and bilateral filtering. Int. J. Comput. Vision 112, 307–318 (2015)CrossRefGoogle Scholar
  19. 19.
    He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1397–1409 (2013)CrossRefGoogle Scholar
  20. 20.
    Xu, L., Lu, C., Xu, Y., Jia, J.: Image smoothing via l0 gradient minimization. ACM Trans. Graph. 30, 2579–2591 (2011)Google Scholar
  21. 21.
    Fattal, R.: Edge-avoiding wavelets and their applications. ACM Trans. Graph. 28, 1–10 (2009)Google Scholar
  22. 22.
    Min, T.-H., Park, R.-H., Chang, S.: Noise reduction in high dynamic range images. Int. J. Signal Image Video Process. 5, 315–328 (2017)CrossRefGoogle Scholar
  23. 23.
    Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Trans. Image Process. 16, 2080–2095 (2007)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Li, Y., Guo, F., Tan, R.T., Brown, M.S.: A contrast enhancement framework with jpeg artifacts suppression. In: European Conference on Computer Vision, pp. 174–188 (2014)Google Scholar
  25. 25.
    Mittal, A., Soundararajan, R., Bovik, A.C.: Making a completely blind image quality analyzer. IEEE Signal Process. Lett. 22, 209–212 (2013)CrossRefGoogle Scholar
  26. 26.
    Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21, 4695–4708 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Zhang, L., Zhang, L., Bovik, A.C.: A feature-enriched completely blind local image quality evaluator. IEEE Trans. Image Process. 24, 2579–2591 (2015)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Guo, X.: Lime: A method for low-light image enhancement. In: ACM on Multimedia Conference, pp. 87–91 (2016)Google Scholar
  29. 29.
    Fu, X., Zeng, D., Huang, Y., Liao, Y., Ding, X., Paisley, J.: A fusion-based enhancing method for weakly illuminated images. Signal Process. 129, 82–96 (2016)CrossRefGoogle Scholar
  30. 30.
    Cai, B., Xu, X., Guo,K., Jia, K., Hu, B., Tao, D.: A joint intrinsic-extrinsic prior model for retinex. In: IEEE International Conference on Computer Vision, pp. 4000–4009 (2017)Google Scholar
  31. 31.
    Wang, Q., Fu, X., Zhang, X.-P.: A fusion-based method for single backlit image enhancement. In: IEEE International Conference on Image Processing, pp. 4077–4081 (2016)Google Scholar
  32. 32.
    Thai, B., Deng, G., Ross, R.: A fast white balance algorithm based on pixel greyness. Int. J. Signal Image Video Process. 11, 525–532 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Harbin Institute of TechnologyHarbinChina

Personalised recommendations