Semi-supervised dimension reduction approaches integrating global and local pattern information
- 266 Downloads
- 1 Citations
Abstract
Dimension reduction is an important research area in pattern recognition. Use of both supervised and unsupervised data can be an advantage in the case of lack of labeled training data. Moreover, use of both global and local pattern information can contribute classification performances. Therefore, four important primary components are essential to design a well-performed semi-supervised dimension reduction approach: global pattern modeling by a supervised manner, local pattern modeling by a supervised manner, global pattern modeling by an unsupervised manner, and local pattern modeling by an unsupervised manner. These primary components are integrated into two proposed methods. The first is the semi-supervised global–local linear discriminant analysis, and the second is the semi-supervised global–local maximum margin criterion. The proposed methods are examined in object recognition and hyperspectral image classification. According to the experimental results, the promising results are obtained against to comparative semi-supervised methods.
Keywords
Dimension reduction Semi-supervised global–local linear discriminant analysis Semi-supervised global–local maximum margin criterion Object recognition Hyperspectral image classificationReferences
- 1.Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. Wiley, Hoboken (2001)zbMATHGoogle Scholar
- 2.He, X., Niyogi, P.: Locality preserving projections. NIPS (2003)Google Scholar
- 3.Belhumeur, P., Hespanha, J., Kriegman, D.: Eigenfaces vs. fisherfaces:recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)CrossRefGoogle Scholar
- 4.Li, X., Jiang, T., Zhang, K.: Efficient and robust feature extraction by maximum margin criterion. IEEE Trans. Neural Netw. 17(1), 157–165 (2006)CrossRefGoogle Scholar
- 5.Zhang, D., He, J., Zhao, Y., Luo, Z., Du, M.: Global plus local: a complete framework for feature extraction and recognition. Pattern Recogn. 47(3), 1433–1442 (2014)CrossRefzbMATHGoogle Scholar
- 6.Gao, Q., Liu, J., Zhang, H., Hou, J., Yang, X.: Enhanced fisher discriminant criterion for image recognition. Pattern Recogn. 45(10), 3717–3724 (2012)CrossRefGoogle Scholar
- 7.Sakarya, U.: Dimension reduction using global and local pattern information based maximum margin criterion. Signal Image Video Process. 10(5), 903–909 (2016)CrossRefGoogle Scholar
- 8.Lu, X., He, Z., Yi, S., Chen, W.-S.: Joint of locality- and globality—preserving projections. Signal Image Video Process. 12, 564–572 (2018)Google Scholar
- 9.Cai, D., He, X., Han, J.: Semi-supervised discriminant analysis. In: IEEE 11th International Conference on Computer Vision (2007)Google Scholar
- 10.Song, Y., Nie, F., Zhang, C., Xiang, S.: A unified framework for semi-supervised dimensionality reduction. Pattern Recogn. 41(9), 2789–2799 (2008)CrossRefzbMATHGoogle Scholar
- 11.Song, Y., Nie, F., Zhang, C.: Semi-supervised sub-manifold discriminant analysis. Pattern Recogn. Lett. 29(13), 1806–1813 (2008)CrossRefGoogle Scholar
- 12.Sugiyama, M., Ide, T., Nakajima, S., Sese, J.: Semi-supervised local Fisher discriminant analysis for dimensionality reduction. Mach. Learn. 78, 35–61 (2010)MathSciNetCrossRefGoogle Scholar
- 13.Huang, H., Li, J., Liu, J.: Enhanced semi-supervised local Fisher discriminant analysis for face recognition. Future Gener. Comput. Syst. 28, 244–253 (2012)CrossRefGoogle Scholar
- 14.Zhao, M., Chow, T.W.S., Wu, Z., Zhang, Z., Li, B.: Learning from normalized local and global discriminative information for semi-supervised regression and dimensionality reduction. Inf. Sci. 324, 286–309 (2015)CrossRefzbMATHGoogle Scholar
- 15.Gao, S., Zhou, J., Yan, Y., Ye, Q.: Recursively global and local discriminant analysis for semi-supervised and unsupervised dimension reduction with image analysis. Neurocomputing 216, 672–683 (2016)CrossRefGoogle Scholar
- 16.Wang, N., Li, X., Chen, P.: Global and local scatter based semi-supervised dimensionality reduction with active constraints selection in ensemble subspaces. Pattern Anal. Appl. 20, 733–747 (2017)MathSciNetCrossRefGoogle Scholar
- 17.Tu, W., Sun, S.: Semi-supervised feature extraction for EEG classification. Pattern Anal. Appl. 16, 213–222 (2013)MathSciNetCrossRefGoogle Scholar
- 18.Mazgut, J., Tino, P., Boden, M., Yan, H.: Dimensionality reduction and topographic mapping of binary tensors. Pattern Anal. Appl. 17, 497–515 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
- 19.Zhang, S., Lei, Y., Zhang, C., Hu, Y.: Semi-supervised orthogonal discriminant projection for plant leaf classification. Pattern Anal. Appl. 19, 953–961 (2016)MathSciNetCrossRefGoogle Scholar
- 20.Sakarya, U.: Hyperspectral dimension reduction using global and local information based linear discriminant analysis. In: ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci., vol. II–7, pp. 61–66 (2014)Google Scholar
- 21.Nene, S., Nayar, S., Murase, H.: Columbia Object Image Library (COIL-100). http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php.Access (1996). Accessed 27 Jan 2014
- 22.AVIRIS NW Indiana’s Indian Pines 1992 data set. ftp://ftp.ecn.purdue.edu/biehl/MultiSpec/92AV3C.tif.zip (data). ftp://ftp.ecn.purdue.edu/biehl/MultiSpec/ThyFiles.zip (ground truth). Access 07 May 2012
- 23.Foody, G.M.: Status of land cover classification accuracy assessment. Remote Sens. Environ. 80(1), 185–201 (2002)CrossRefGoogle Scholar
- 24.R Core Team, R: A language and environment for statistical computing. http://www.R-project.org/, Vienna, Austria (2014)
- 25.Hijmans, R.J.: Raster: geographic data analysis and modeling, R package version 2.3-24. http://CRAN.R-project.org/package=raster (2015)
- 26.Bengtsson, H.: R.matlab: read and write ofMATfiles together with R-to-MATLAB connectivity, R package version 2.2.3. http://CRAN.R-project.org/package=R.matlab (2014)
- 27.Beygelzimer, A., Kakadet, S., Langford, J., Arya, S., Mount, D., Li, S.: FNN: fast nearest neighbor search algorithms and applications, R package version 1.1. http://CRAN.R-project.org/package=FNN (2013)
- 28.Venables, W.N., Ripley, B.D.: Modern Applied Statistics with S, 4th edn. Springer, New York (2002)CrossRefzbMATHGoogle Scholar