Advertisement

Signal, Image and Video Processing

, Volume 13, Issue 1, pp 155–162 | Cite as

Image restoration using spatially variant hyper-Laplacian prior

  • Junting Cheng
  • Yi GaoEmail author
  • Boyang Guo
  • Wangmeng Zuo
Original Paper
  • 130 Downloads

Abstract

The heavy-tailed hyper-Laplacian prior has been successfully applied in image restoration tasks, in which the unified distribution is adopted for the whole image. However, the gradient distribution of natural image is reasonably assumed to be spatially variant, e.g., gradient distribution of the region with less texture is more heavy-tailed. In this paper, we propose to model the gradient distribution of natural images as spatially variant hyper-Laplacian. The proposed model adapts the hyper-Laplacian parameters to each pixel. Within the maximum a posterior model, we address the problem using an alternating optimization method. Also the proposed model is free from tedious tuning trade-off parameters. Compared with the deconvolution algorithm using uniform hyper-Laplacian prior, the experimental results validate that the proposed model can achieve better restoration results in terms of visual quality and quantitative indicators.

Keywords

Image restoration Hyper-Laplacian prior Maximum a posterior (MAP) 

References

  1. 1.
    Chan, T.F., Shen, J.H., Zhou, H.M.: Total variation wavelet inpainting. J. Math. Imaging Vis. 25(1), 107–125 (2006)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Li, M., Nguyen, T.Q.: Markov random field model-based edge-directed image interpolation. IEEE Trans. Image Process. 17(7), 1121–1128 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Joshi, N., et al.: Image deblurring and denoising using color priors. IEEE Conf. Comput. Vis. Pattern Recognit. 2009, 1550–1557 (2009)Google Scholar
  4. 4.
    Arietta, S., Lawrence, J.: Building and using a database of one trillion natural-image patches. IEEE Comput. Graph. Appl. 31(1), 9–19 (2010)CrossRefGoogle Scholar
  5. 5.
    Levin, A., Nadler, B.: Natural image denoising: Optimality and inherent bounds. IEEE Conf. Comput. Vis. Pattern Recognit. 2011, 2833–2840 (2011)Google Scholar
  6. 6.
    Zoran, D., Weiss, Y.: From learning models of natural image patches to whole image restoration. IEEE Int. Conf. Comput. Vis 2011, 479–486 (2011)Google Scholar
  7. 7.
    Tang, S., et al.: Non-blind image deblurring method by local and nonlocal total variation models. Sig. Process. 94(1), 339–349 (2014)CrossRefGoogle Scholar
  8. 8.
    Jidesh, P., Bini, A.A.: Image despeckling and deblurring via regularized complex diffusion. SIViP 11(6), 977–984 (2017)CrossRefGoogle Scholar
  9. 9.
    Hong, H.Y., Hua, X., Zhang, X.H., Shi, Y.: Multi-frame real image restoration based on double loops with alternative maximum likelihood estimation. SIViP 10(8), 1489–1495 (2016)CrossRefGoogle Scholar
  10. 10.
    Fatih, K., Cabir, V.: Blind restoration and resolution enhancement of images based on complex filtering. SIViP 10(6), 1159–1167 (2016)CrossRefGoogle Scholar
  11. 11.
    Lai, Z., et al.: Sparse tensor discriminant analysis. IEEE Trans. Image Process. 22(10), 3904–3915 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gu, S., et al.: Weighted nuclear norm minimization with application to image denoising. IEEE Conf. Comput. Vis. Pattern Recognit. 2014, 2862–2869 (2014)Google Scholar
  13. 13.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60(1), 259–268 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Cho, T.S., et al.: Image restoration by matching gradient distributions. IEEE Trans. Pattern Anal. Mach. Intell. 34(4), 683–694 (2012)CrossRefGoogle Scholar
  15. 15.
    Krishnan, D., Fergus, R.: Fast image deconvolution using hyper-Laplacian priors. In: NIPS’09 Proceeding of the 22nd International Conference on Neural Information Processing Systems, pp. 1033–1041 (2009)Google Scholar
  16. 16.
    Cho, T.S., et al.: A content-aware image prior. IEEE Conf. Comput. Vis. Pattern Recognit. 2010, 169–176 (2010)Google Scholar
  17. 17.
    Levin, A., et al.: Image and depth from a conventional camera with a coded aperture. ACM Trans. Graph. 26(3), 70 (2007)CrossRefGoogle Scholar
  18. 18.
    Couzinie-Devy, F., et al.: Learning to estimate and remove non-uniform image blu. IEEE Conf. Comput. Vis. Pattern Recognit. 2013, 1075–1082 (2013)Google Scholar
  19. 19.
    Cheng, Q., et al.: Inpainting for remotely sensed images with a multichannel nonlocal total variation model. IEEE Trans. Geosci. Remote Sens. 52(1), 175–187 (2014)CrossRefGoogle Scholar
  20. 20.
    Liu, H., et al.: Non-local extension of total variation regularization for image restoration. IEEE Int. Symp. Circuits Syst. (ISCAS) 2014, 1102–1105 (2014)Google Scholar
  21. 21.
    Liu, R.W., et al.: Generalized total variation-based MRI Rician denoising model with spatially adaptive regularization parameters. Magn. Reson. Imaging 32(6), 702–720 (2014)CrossRefGoogle Scholar
  22. 22.
    Wu, H., Wu, Y., Wen, Z.: Texture smoothing based on adaptive total variation. Found. Intell. Syst. 277, 43–54 (2014)zbMATHGoogle Scholar
  23. 23.
    Bishop, T.E., Molina, R., Hopgood, J.R.: Nonstationary blind image restoration using variational methods. ICIP 1, 125–128 (2007)Google Scholar
  24. 24.
    Pogue, B.W., et al.: Spatially variant regularization improves diffuse optical tomography. Appl. Opt. 38(13), 2950–2961 (1999)CrossRefGoogle Scholar
  25. 25.
    Xu, H., et al.: Iterative nonlocal total variation regularization method for image restoration. PLoS ONE 8(6), e65865 (2013)CrossRefGoogle Scholar
  26. 26.
    Zuo, W., et al.: A generalized iterated shrinkage algorithm for non-convex sparse coding. IEEE Int. Conf. Comput. Vis. 2013, 217–224 (2013)Google Scholar
  27. 27.
    Levin, A., et al.: Understanding and evaluating blind deconvolution algorithms. IEEE Conf. Comput. Vis. Pattern Recognit. 2009, 1964–1971 (2009)Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Heilongjiang University of Science and Technology, School of Mechanical EngineeringHarbinChina
  2. 2.Harbin Institute of Technology, School of Computer Science and TechnologyHarbinChina

Personalised recommendations