Advertisement

Signal, Image and Video Processing

, Volume 13, Issue 1, pp 145–153 | Cite as

Fast inter-prediction algorithms for spatial Scalable High efficiency Video Coding SHVC

  • Ibtissem WaliEmail author
  • Amina Kessentini
  • Mohamed Ali Ben Ayed
  • Nouri Masmoudi
Original Paper
  • 53 Downloads

Abstract

Scalable High Efficiency Video Coding (SHVC) has aggregated an exhaustive algorithm for mode decision based on a recursive quad-tree structure coding unit. However, this comes at the cost of high computational complexity. Therefore, in order to improve the SHVC in terms of encoding time, fast inter-mode decision algorithms for spatial scalability were suggested in this paper. This study focuses on using statistical analysis and the correlation between base layer and enhanced layer modes to speed up the mode decision algorithm for inter-mode. Consequently, the proposed method concerns only the inter-prediction module. It is devoted to three principal levels: CUs level, PUs, and skip mode. Experimental results for different proposed methods showed an important improvement in terms of encoding time which is the most important constraint for any real-time implementation. Moreover, the combination of these three methods could achieve up to 48% of time reduction with insignificant loss in video quality.

Keywords

Video coding HEVC SHVC Enhancement layer Base layer Coding efficiency 

References

  1. 1.
    Schwarz, H., Marpe, D., Wiegand, T.: Overview of the scalable video coding extension of the H.264/AVC standard. IEEE Trans. Circuits Syst. Video Technol. 17(9), 1103–1120 (2007)CrossRefGoogle Scholar
  2. 2.
    Sullivan, G.J., Ohm, J.R., Han, W.J., Wiegand, T.: Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1649–1668 (2012)CrossRefGoogle Scholar
  3. 3.
    Ohm, J.R., Sullivan, G.J., Schwarz, H., Tan, T.K., Wiegand, T.: Comparison of the coding efficiency of video coding standards including high efficiency video coding (HEVC). IEEE Trans. Circuits Syst. Video Technol. 22, 1669–1684 (2012)CrossRefGoogle Scholar
  4. 4.
    Boyce, J.M., Ye, Y., Chen, J., Ramasubramonian, A.K.: Overview of SHVC: scalable extensions of the high efficiency video coding standard. IEEE Trans. Circuits Syst. Video Technol. 26(1), 20–34 (2016)CrossRefGoogle Scholar
  5. 5.
    Li, H., Lu, J., Chao, H.: A framework of building complexity scalable and cost-effective algorithms for HEVC. In: Zhang, W., Yang, X., Xu, Z., An, P., Liu, Q., Lu, Y. (eds.) Advances on Digital Television and Wireless Multimedia Communications. Communications in Computer and Information Science, vol. 331. Springer, Berlin (2012)Google Scholar
  6. 6.
    Kessentini, A., Samet, A., Ayed, M.A.B., Masmoudi, N.: Fast mode decision algorithm for H.264/SVC enhancement layer. J. Real-Time Process. 11(2), 385–400 (2016)CrossRefGoogle Scholar
  7. 7.
    Balaji, L., Thyagharajan, K.K.: H.264 SVC complexity reduction based on likelihood mode decision. Sci. World J. 2015. Article ID 418437 (2015)Google Scholar
  8. 8.
    Kim, T.-J., Yoo, J.-J., Hong, J.-W., Suh, J.-W.: Fast mode decision algorithm for scalable video coding based on luminance coded block pattern. Opt. Eng. 52(1), 017401 (2013)CrossRefGoogle Scholar
  9. 9.
    Wang, D., Sun, Y., Huang, Y., Bai, M., Li, H.: A fast mode decision algorithm applied in medium-grain quality scalable video coding. J. Vis. Commun. Image Represent. 34C(2016), 78–88 (2016)CrossRefGoogle Scholar
  10. 10.
    Pan, Z., Kwong, S., Sun, M.-T., Lei, J.: Early MERGE mode decision based on motion estimation and hierarchical depth correlation for HEVC. IEEE Trans. Broadcast. 60(2), 405–412 (2014)CrossRefGoogle Scholar
  11. 11.
    Zhao, L., Zhang, L., Ma, S., Zhao, D.: Fast mode decision algorithm for intra prediction in HEVC. In: Visual Communications and Image Processing (VCIP), 2011 IEEE, pp. 1–4. IEEE (2011)Google Scholar
  12. 12.
    Tohidypour, H.R., Pourazad, M.T., Nasiopoulos, P.: Content adaptive complexity reduction scheme for quality/fidelity scalable HEVC. In: 12th JCT-VC Meeting, document JCTVC-L0042, Geneva (2013)Google Scholar
  13. 13.
    Bailleul, R., De Cock, J., Van De Walle, R.: Fast mode decision for SNR scalability in SHVC digest of technical papers. In: 2014 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, pp. 193–194 (2014)Google Scholar
  14. 14.
    Tohidypour, H.R., Pourazad, M.T., Nasiopoulos, P., Slevinsky, J.: A new mode for coding residual in scalable HEVC (SHVC). In: 2015 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, pp. 372–373 (2015)Google Scholar
  15. 15.
    Tohidypour, H.R., Pourazad, M.T., Nasiopoulos, P.: Probabilistic approach for predicting the size of coding units in the quad-tree structure of the quality and spatial scalable HEVC. IEEE Trans. Multimed. 18(2), 182–195 (2016)CrossRefGoogle Scholar
  16. 16.
    Tohidypour, H.R., Pourazad, M.T., Nasiopoulos, P.: Adaptive search range method for spatial scalable HEVC. In: Proceedings of the IEEE International Conference Consumer Electronics, pp. 191–192 (2014)Google Scholar
  17. 17.
    Zuo, X., Yu, L.: Fast mode decision method for all intra spatial scalability in SHVC. In: Proceedings of VCIP, pp. 394–397 (2014)Google Scholar
  18. 18.
    Wang, D., Yuan, C., Sun, Y., Zhang, J., Zhou, H.: Fast mode and depth decision algorithm for intra-prediction of quality SHVC. In: Intelligent Computing Theory, Series Lecture Notes in Computer Science, vol. 8588, pp. 693–699 (2014)Google Scholar
  19. 19.
    Li, X., Chen, M., Qu, Z., Xiao, J., Gabbouj, M.: An effective CU size decision method for quality scalability in SHVC. Multimed. Tools Appl. 76(6), 8011–8030 (2017)CrossRefGoogle Scholar
  20. 20.
    Wang, C.-C., Chang, Y.-S., Huang, K.-N.: Efficient coding tree unit (CTU) decision method for sHigh-efficiency video coding (SHVC) encoder. In: Recent Advances in Image and Video Coding. InTech (2016)Google Scholar
  21. 21.
    Wali, I., Kessentini, A., Ayed, M.A.B., Masmoudi, N.: Depth partitioning and coding mode selection statistical analysis for SHVC. Int. J. Adv. Comput. Sci. Appl. 8(1) (2017)Google Scholar
  22. 22.
    Pourazad, M.T., Doutre, C., Azimi, M., Nasiopoulos, P.: HEVC: the new gold standard for video compression: how does HEVC compare with H.264/AVC? IEEE Consum. Electron. Mag. 1(3), 36–46 (2012)CrossRefGoogle Scholar
  23. 23.
    Wien, M.: High efficiency video coding. In: Coding Tools and Specification, pp. 133–160. Springer (2015).  https://doi.org/10.1007/978-3-662-44276-0
  24. 24.
    Sullivan, G.J., Ohm, J.R., Han, W. J., Wiegand, T.: Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1649–1668 (2012)CrossRefGoogle Scholar
  25. 25.
    Sze, V., Budagavi, M., Sullivan, G.: High efficiency video coding (HEVC). In: Integrated Circuit and Systems, Algorithms and Architectures. Springer (2014).  https://doi.org/10.1007/978-3-319-06895-4
  26. 26.
    Wali, I., Kessentini, A., Ayed, M.A.B., Masmoudi, N.: Statistical analysis of SHVC encoded video. In: Second International Image Processing. Application and Systems Conference. (IPAS’16). 2016—World Conference on. Hammamet, pp. 1–4 (2015)Google Scholar
  27. 27.
    Chen, J., Boyce, J., Yan, Y., Hannuksela, M.M., Sullivan, G.J., Wang, Y.-K.: Scalable High Efficiency Video Coding Draft 7, JCTVC-R1008. In: 18th JCTVC Meeting, Sapporo (2014)Google Scholar
  28. 28.
    Seregin, V., He, Y.: Common SHM test conditions and software reference configurations. In: Document JCTVC-O1009. Geneva (2013)Google Scholar
  29. 29.
    Scalable HEVC (SHVC) Test Model 12 (SHM 12). https://hevc.hhi.fraunhofer.de/svn/svn_SHVCSoftware/tags/SHM-12.0/
  30. 30.
    High efficiency video coding HEVC test model 16.0 (HM.16.0). https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-16.0/
  31. 31.
    Bjontegaard, G.: Calculation of average PSNR differences between RD-curves Doc. VCEG-M33. Austin (2001)Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Ibtissem Wali
    • 1
    Email author
  • Amina Kessentini
    • 1
  • Mohamed Ali Ben Ayed
    • 2
  • Nouri Masmoudi
    • 1
  1. 1.Electronics and Information Technology Laboratory, ENISUniversity of SfaxSfaxTunisia
  2. 2.New Technologies and Telecommunication Systems Research Unit, ENET’COMUniversity of SfaxSfaxTunisia

Personalised recommendations