Signal, Image and Video Processing

, Volume 13, Issue 1, pp 121–126 | Cite as

Multiple bleeding detection in wireless capsule endoscopy

  • Ouiem Bchir
  • Mohamed Maher Ben IsmailEmail author
  • Nada AlZahrani
Original Paper


Wireless capsule endoscopy (WCE) is an emerging technology that aims to detect pathology in the patient gastrointestinal tract. Physicians can use WCE to detect various gastrointestinal diseases at early stages. However, the diagnosis is tedious because it requires reviewing hundreds of frames extracted from the captured video. This tedious task has promoted researchers’ efforts to propose automated diagnosis tools of WCE frames in order to detect symptoms of gastrointestinal diseases. In this paper, we propose an automatic multiple bleeding spots detection using WCE video. The proposed approach relies on two main components: (1) a feature extraction intended to capture the visual properties of the multiple bleeding spots, and (2) a supervised and unsupervised learning techniques which aim to accurately recognize multiple bleeding.


Wireless capsule endoscopy Multiple bleeding spots Recognition Clustering Classification 



The authors are grateful for the support by the Research Center of the College of Computer and Information Sciences, King Saud University.


  1. 1.
    US Department of Health and Human Services: Opportunities and Challenges in Digestive Diseases Research: Recommendations of the National Commission on Digestive Diseases. National Institutes of Health, Bethesda (2009)Google Scholar
  2. 2.
    Iddan, G., et al.: Wireless capsule endoscopy. Nature 405, 417 (2000)CrossRefGoogle Scholar
  3. 3.
    Serej, N.D., et al.: A robust keypoint extraction and matching algorithm based on wavelet transform and information theory for point-based registration in endoscopic sinus cavity data. Signal Image Video Process. 10(5), 983–991 (2016)CrossRefGoogle Scholar
  4. 4.
    Martinez-Herrera, S.E., et al.: Identification of precancerous lesions by multispectral gastroendoscopy. Signal Image Video Process. 10(3), 455–462 (2016)CrossRefGoogle Scholar
  5. 5.
    Xiao, Wu, et al.: Automatic hookworm detection in WCE images. IEEE Trans. Med. Imaging 35(7), 1741–1752 (2016)CrossRefGoogle Scholar
  6. 6.
    Winstone, B., et al.: Toward bio-inspired tactile sensing capsule endoscopy for detection of submucosal tumors. IEEE Sens. J. 17(3), 848–857 (2017)CrossRefGoogle Scholar
  7. 7.
    Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999)CrossRefzbMATHGoogle Scholar
  8. 8.
    Bashar, M., et al.: Automatic detection of informative frames from WCE images. Med. Image Anal. 14, 449–470 (2010)CrossRefGoogle Scholar
  9. 9.
    Suykens, J.A., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9, 293–300 (1999)CrossRefGoogle Scholar
  10. 10.
    Li, B., Meng, M.-H.: WCE images enhancement using contrast driven forward and backward anisotropic diffusion. In: Proceedings IEEE International Conference on Image Processing, pp. 437–440 (2007)Google Scholar
  11. 11.
    Yeh, J.Y., et al.: Bleeding and ulcer detection using WCE images. J. Softw. Eng. Appl. 7, 422 (2014)CrossRefGoogle Scholar
  12. 12.
    Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)zbMATHGoogle Scholar
  13. 13.
    Quinlan, J.R.: Simplifying decision trees. Int. J. Man Mach. Stud. 27, 221–234 (1987)CrossRefGoogle Scholar
  14. 14.
    McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Khun, P.C., et al.: Feature selection and classification for wireless capsule endoscopic frames. In: Proceedings of International Conference on Biomedical and Pharmaceutical Engineering, pp. 1–6 (2009)Google Scholar
  16. 16.
    He, D.-C., Wang, L.: Texture unit, texture spectrum, and texture analysis. IEEE Trans. Geosci. Remote Sens. 28, 509–512 (1990)CrossRefGoogle Scholar
  17. 17.
    Meyer, Y.: Wavelets and Operators, vol. 1. Cambridge University Press, Cambridge (1995)zbMATHGoogle Scholar
  18. 18.
    Giritharan, B., et al.: Bleeding detection from capsule endoscopy videos. In: Proceedings of 30th International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4780–4783 (2008)Google Scholar
  19. 19.
    Shah, S.K., et al.: Classification of bleeding images in WCE using HSI color domain and region segmentation. In: Conference URI-NE ASEE (2007)Google Scholar
  20. 20.
    Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24, 603–619 (2002)CrossRefGoogle Scholar
  21. 21.
    Li, B., et al.: Computer-aided detection of bleeding regions for capsule endoscopy images. IEEE Trans. Biomed. Eng. 56, 1032–1039 (2009)CrossRefGoogle Scholar
  22. 22.
    Fu, Y., et al.: Computer-aided bleeding detection in WCE video. IEEE J. Biomed. Health Inform. 18, 636–642 (2014)CrossRefGoogle Scholar
  23. 23.
    Karargyris, A., Bourbakis, N.: A methodology for detecting blood-based abnormalities in WCE videos. In: IEEE International Conference on BioInformatics and BioEngineering, pp. 1–6 (2008)Google Scholar
  24. 24.
    Alotaibi, S., Qasim, S., Bchir, O., Ismail, M.M.B.: Empirical comparison of visual descriptors for multiple bleeding spots recognition in wireless capsule endoscopy video. In: Computer Analysis of Images and Patterns, pp. 402–407 (2013)Google Scholar
  25. 25.
    Li, C., et al.: Online redundant image elimination and its application to wireless capsule endoscopy. Signal Image Video Process. 8(8), 1497–1506 (2014)CrossRefGoogle Scholar
  26. 26.
    Dr Khoroo’s Medical Clinic/Trust. online:, [Sep. 6, 2015]
  27. 27.
    Manjunath, B., Salembier, P., Sikora, T.: Introduction to MPEG 7: Multimedia Content Description Language. Wiley, Hoboken (2002)Google Scholar
  28. 28.
    Iakovidis, D.K., Tsevas, S., Polydorou, A.: Reduction of capsule endoscopy reading times by unsupervised image mining. Comput. Med. Imaging Graph. 34, 471–478 (2010)CrossRefGoogle Scholar
  29. 29.
    Bezdek, J.C., Ehrlich, R., Full, W.: FCM: the fuzzy c-means clustering algorithm. Comput. Geosci. 10, 191–203 (1984)CrossRefGoogle Scholar
  30. 30.
    Okun, O., Priisalu, H.: Unsupervised data reduction. Signal Process. 87, 2260–2267 (2007)CrossRefzbMATHGoogle Scholar
  31. 31.
    Mitchell, T.: Machine Learning. McGraw Hill, New York (1997)zbMATHGoogle Scholar
  32. 32.
    Davis, J.C., Sampson, R.J.: Statistics and data analysis in geology, vol. 646. Wiley, Hoboken (1986)Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Computer Science Department, College of Computer and Information SciencesKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations