Signal, Image and Video Processing

, Volume 12, Issue 6, pp 1107–1114 | Cite as

Automatic benthic imagery recognition using a hierarchical two-stage approach

  • Tadas RimavičiusEmail author
  • Adas Gelžinis
  • Antanas Verikas
  • Evaldas Vaičiukynas
  • Marija Bačauskienė
  • Aleksėj Šaškov
Original Paper


The main objective of this work is to establish an automated classification system of seabed images. A novel two-stage approach to solving the image region classification task is presented. The first stage is based on information characterizing geometry, colour and texture of the region being analysed. Random forests and support vector machines are considered as classifiers in this work. In the second stage, additional information characterizing image regions surrounding the region being analysed is used. The reliability of decisions made in the first stage regarding the surrounding regions is taken into account when constructing a feature vector for the second stage. The proposed technique was tested in an image region recognition task including five benthic classes: red algae, sponge, sand, lithothamnium and kelp. The task was solved with the average accuracy of 90.11% using a data set consisting of 4589 image regions and the tenfold cross-validation to assess the performance. The two-stage approach allowed increasing the classification accuracy for all the five classes, more than 27% for the “difficult” to recognize “kelp” class.


Seabed image segmentation Machine learning Supervised classification Feature extraction Two-stage classifier 



The authors would like to thank Sergej Olenin and his team for allowing to use their video sequences and manual data labelling.


  1. 1.
    Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: Slic superpixels compared to state-of-theart superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)CrossRefGoogle Scholar
  2. 2.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)CrossRefzbMATHGoogle Scholar
  3. 3.
    Celebi, A.T., Erturk, S.: Visual enhancement of underwater images using empirical mode decomposition. Expert Syst. Appl. 39(1), 800–805 (2012)CrossRefGoogle Scholar
  4. 4.
    Cernadas, E., Fernndez-Delgado, M., Gonzlez-Rufino, E., Carrin, P.: Influence of normalization and color space to color texture classification. Pattern Recognit. 61, 120–138 (2017)CrossRefGoogle Scholar
  5. 5.
    Cherouat, S., Soltani, F., Schmitt, F., Daout, F.: Using fractal dimension to target detection in bistatic SAR data. SIViP 9(2), 365–371 (2015)CrossRefGoogle Scholar
  6. 6.
    Clausi, D.A.: An analysis of co-occurrence texture statistics as a function of grey level quantization. Can. J. Remote Sens. 28(1), 45–62 (2002)CrossRefGoogle Scholar
  7. 7.
    Galdran, A., Pardo, D., Picn, A., Alvarez-Gila, A.: Automatic red-channel underwater image restoration. J. Vis. Commun. Image Represent. 26, 132–145 (2015)CrossRefGoogle Scholar
  8. 8.
    Galloway, W.E.: Process framework for describing the morphologic and stratigraphic evolution of deltaic depositional systems. Deltas: Models for Exploration, pp. 87–98 (1975)Google Scholar
  9. 9.
    Ghani, A.S.A., Isa, N.A.M.: Underwater image quality enhancement through integrated color model with Rayleigh distribution. Appl. Soft Comput. 27, 219–230 (2015)CrossRefGoogle Scholar
  10. 10.
    Gleason, A.C.R., Reid, R.P., Voss, K.J.: Automated classification of underwater multispectral imagery for coral reef monitoring. OCEANS 2007, 1–8 (2007)Google Scholar
  11. 11.
    Gobi, A.F.: Towards generalized benthic species recognition and quantification using computer vision. In: OCEANS 2010, pp. 1–6. IEEE, Sydney (2010)Google Scholar
  12. 12.
    Haralick, R., Shanmugam, K.: Computer classification of reservoir sandstones. IEEE Trans. Geosci. Electron. 11(4), 171–177 (1973)CrossRefGoogle Scholar
  13. 13.
    Mansoor, H., Sorayya, M., Aishah, S., Mosleh, M.A.: Automatic recognition system for some cyanobacteria using image processing techniques and ANN approach. In: International Conference on Environmental and Computer Science, vol. 19, pp. 73–78. Singapore (2011)Google Scholar
  14. 14.
    Hamilton, L.J.: Topics in acoustic seabed segmentation current practice, open software, and data fusion. In: Proceedings of International Conference Acoustics, Development, and the Environment. Fremantle (2012)Google Scholar
  15. 15.
    Jalali, S., Seekings, P.J., Tan, C., Tan, H.Z.W., Lim, J.H., Taylor, E.A.: Classification of marine organisms in underwater images using CQ-HMAX biologically inspired color approach. In: The 2013 International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2013)Google Scholar
  16. 16.
    Jerosch, K., Ldtke, A., Schlter, M., Ioannidis, G.: Automatic content-based analysis of georeferenced image data: detection of beggiatoa mats in seafloor video mosaics from the Hkon Mosby Mud Volcano. Comput. Geosci. 33(2), 202–218 (2007)CrossRefGoogle Scholar
  17. 17.
    Kamarainen, J.K., Kyrki, V., Kalviainen, H.: Invariance properties of gabor filter-based features-overview and applications. IEEE Trans. Image Process. 15(5), 1088–1099 (2006)CrossRefGoogle Scholar
  18. 18.
    Kaplan, N.H., Ayten, K.K., Dumlu, A.: Single image dehazing based on multiscale product prior and application to vision control. SIViP 11(8), 1389–1396 (2017)CrossRefGoogle Scholar
  19. 19.
    Ludtke, A., Jerosch, K., Herzog, O., Schlter, M.: Development of a machine learning technique for automatic analysis of seafloor image data: case example, pogonophora coverage at mud volcanoes. Comput. Geosci. 39, 120–128 (2012)CrossRefGoogle Scholar
  20. 20.
    Manderson, T., Li, J., Cort’es Poza, D., Dudek, N., Meger, D., Dudek, G.: Field and Service Robotics: Results of the 10th International Conference, chap. Towards Autonomous Robotic Coral Reef Health Assessment, pp. 95–108. Springer International Publishing, Cham (2016)Google Scholar
  21. 21.
    Mosleh, M.A., Manssor, H., Malek, S., Milow, P., Salleh, A.: A preliminary study on automated freshwater algae recognition and classification system. BMC Bioinform. 13(17), 1–13 (2012)Google Scholar
  22. 22.
    Pugh, M., Tiddeman, B., Dee, H., Hughes, P.: Towards automated classification of seabed substrates in underwater video. In: 2014 ICPR Workshop on Computer Vision for Analysis of Underwater Imagery (CVAUI), pp. 9–16 (2014)Google Scholar
  23. 23.
    Qin, C., Song, S., Huang, G., Zhu, L.: Unsupervised neighborhood component analysis for clustering. Neurocomputing 168, 609–617 (2015)CrossRefGoogle Scholar
  24. 24.
    Šaškov, A., Dahlgren, T.G., Rzhanov, Y., Schläppy, M.L.: Comparison of manual and semi-automatic underwater imagery analyses for monitoring of benthic hard-bottom organisms at offshore renewable energy installations. Hydrobiologia 756(1), 139–153 (2014)Google Scholar
  25. 25.
    Schwartz, W.R., Roberti de Siqueira, F., Pedrini, H.: Evaluation of feature descriptors for texture classification. J. Electron. Imaging 21(2), 023,016–1–023,016–17 (2012)CrossRefGoogle Scholar
  26. 26.
    Shihavuddin, A., Gracias, N., Garcia, R., Escartin, J., Birger Pedersen, R.: Automated classification and thematic mapping of bacterial mats in the north sea. In: OCEANS-Bergen, 2013 MTS/IEEE, pp. 1–8 (2013)Google Scholar
  27. 27.
    Soh, L.K., Tsatsoulis, C.: Texture analysis of sar sea ice imagery using gray level co-occurrence matrices. IEEE Trans. Geosci. Remote Sens. 37(2), 780–795 (1999)CrossRefGoogle Scholar
  28. 28.
    Vapnik, V.N.: Statistical Learning Theory. Wiley, Hoboken (1998)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Tadas Rimavičius
    • 1
    Email author
  • Adas Gelžinis
    • 1
  • Antanas Verikas
    • 1
    • 2
  • Evaldas Vaičiukynas
    • 1
  • Marija Bačauskienė
    • 1
  • Aleksėj Šaškov
    • 3
  1. 1.Department of Electric Power SystemsKaunas University of TechnologyKaunasLithuania
  2. 2.CAISRHalmstad UniversityHalmstadSweden
  3. 3.Open Access Centre for Marine ResearchKlaipeda UniversityKlaipedaLithuania

Personalised recommendations