Advertisement

Signal, Image and Video Processing

, Volume 12, Issue 6, pp 1125–1132 | Cite as

Ultrasound spatiotemporal despeckling via Kronecker wavelet-Fisz thresholding

  • Younes Farouj
  • Laurent Navarro
  • Jean-Marc Freyermuth
  • Marianne Clausel
  • Philippe Delachartre
Original Paper
  • 20 Downloads

Abstract

We propose a novel framework for despeckling ultrasound image sequences while respecting the structural details. More precisely, we use thresholding in an adapted wavelet domain that jointly takes into account for the non-Gaussian statistics of the noise and the differences in spatial and temporal regularities. The spatiotemporal wavelet is obtained via the Kronecker product of two sparsifying wavelet bases acting, respectively, on the spatial and temporal domains. Besides enabling a structured sparse representation of the time–space plan, it also makes it possible to perform a variance stabilization routine on the spatial domain through a Fisz transformation. The proposed method enjoys adaptability, easy tuning and theoretical guaranties. We propose the corresponding algorithm together with results that demonstrate the benefits of the proposed spatiotemporal approach over the successive spatial treatment. Finally, we describe a data-driven extension of the proposed method that is based on temporal pre-filtering.

Keywords

Dynamic ultrasound imaging Despeckling Fisz transformation Variance stabilization Structured sparsity 

Notes

Acknowledgements

This work was supported by “Région Rhône-Alpes” under the ARC 6. L. Navarro’s research was supported by the (ANR) under reference ANR-15-CE19-0002 (LBSMI). P. Delachartre was within the framework of the Labex CELYA (ANR-10-LABX-0060) and Labex PRIMES (ANR-11-LABX-0063) of the Université de Lyon.

Supplementary material

Supplementary material 1 (avi 2997 KB)

Supplementary material 2 (avi 3681 KB)

References

  1. 1.
    Abbott, J.G., Thurstone, F.: Acoustic speckle: theory and experimental analysis. Ultrason. Imaging 1(4), 303–324 (1979)CrossRefGoogle Scholar
  2. 2.
    Achim, A., Bezerianos, A., Tsakalides, P.: Novel Bayesian multiscale method for speckle removal in medical ultrasound images. IEEE Trans. Med. Imaging 20(8), 772–783 (2001)CrossRefGoogle Scholar
  3. 3.
    Amiot, C., Girard, C., Chanussot, J., Pescatore, J., Desvignes, M.: Spatio-temporal multiscale denoising of fluoroscopic sequence. IEEE Trans. Med. Imaging 35(6), 1565–1574 (2016)CrossRefGoogle Scholar
  4. 4.
    Clarysse, P., Tafazzoli, J., Delachartre, P., Croisille, P.: Simulation based evaluation of cardiac motion estimation methods in tagged-MR image sequences. J. Cardiovasc. Magn. Reson. 13(Suppl 1), P360 (2011)CrossRefGoogle Scholar
  5. 5.
    Coifman, R.R., Donoho, D.L.: Translation-invariant denoising. In: Antoniadis and Oppenheim, Wavelets and Statistics. Lecture Notes in Statistics, pp. 125–150 (1995)Google Scholar
  6. 6.
    Coupé, P., Hellier, P., Kervrann, C., Barillot, C.: Nonlocal means-based speckle filtering for ultrasound images. IEEE Trans. Image Process. 18(7), 2221–2229 (2009)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Duarte, M.F., Baraniuk, R.G.: Kronecker compressive sensing. IEEE Trans. Image Process. 21(2), 494–504 (2012)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Farouj, Y., Freyermuth, J.M., Navarro, L., Clausel, M., Delachartre, P.: Hyperbolic wavelet-Fisz denoising for a model arising in ultrasound imaging. IEEE Trans. Comput. Imaging 3(1), 1–10 (2017)CrossRefGoogle Scholar
  9. 9.
    Forouzanfar, M., Moghaddam, H.A., Gity, M.: A new multiscale Bayesian algorithm for speckle reduction in medical ultrasound images. SIViP 4(3), 359–375 (2010)CrossRefMATHGoogle Scholar
  10. 10.
    Fryzlewicz, P.: Data-driven wavelet-Fisz methodology for nonparametric function estimation. Electron. J. Stat. 2, 863–896 (2008)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Gifani, P., Behnam, H., Sani, Z.A.: Noise reduction of echocardiographic images based on temporal information. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61(4), 620–630 (2014)CrossRefGoogle Scholar
  12. 12.
    Gupta, D., Anand, R.S., Tyagi, B.: Despeckling of ultrasound medical images using ripplet domain nonlinear filtering. SIViP 9(5), 1093–1111 (2015)CrossRefGoogle Scholar
  13. 13.
    Jidesh, P., Bini, A.A.: Image despeckling and deblurring via regularized complex diffusion. SIViP 11(6), 977–984 (2017)CrossRefGoogle Scholar
  14. 14.
    Lee, J.S.: Digital image enhancement and noise filtering by use of local statistics. IEEE Trans. Pattern Anal. Mach. Intell. 2(2), 165–168 (1980)CrossRefGoogle Scholar
  15. 15.
    Loupas, T., McDicken, W., Allan, P.: An adaptive weighted median filter for speckle suppression in medical ultrasonic images. IEEE Trans. Circuits Syst. 36, 129–135 (1989)CrossRefGoogle Scholar
  16. 16.
    Motakis, E., Nason, G.P., Fryzlewicz, P., Rutter, G.: Variance stabilization and normalization for one-color microarray data using a data-driven multiscale approach. Bioinformatics 22(20), 2547–2553 (2006)CrossRefGoogle Scholar
  17. 17.
    Nadaraya, E.A.: On estimating regression. Theory Probab. Appl. 9(1), 141–142 (1964)CrossRefMATHGoogle Scholar
  18. 18.
    Nason, G.: Wavelet Methods in Statistics with R. Springer Science & Business Media, Berlin (2010)MATHGoogle Scholar
  19. 19.
    Tenbrinck, D., Schmid, S., Jiang, X., Schäfers, K.P., Stypmann, J.: Histogram-based optical flow for motion estimation in ultrasound imaging. J. Math. Imaging Vis. 47(1–2), 138–150 (2013)CrossRefMATHGoogle Scholar
  20. 20.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Medical Image Processing Lab, Institute of BioengineeringEPFLLausanneSwitzerland
  2. 2.CNRS UMR 5307; LGFÉcole Nationale Supérieure des MinesSaint-ÉtienneFrance
  3. 3.Institute of StatisticsUniversité de NeuchâtelNeuchâtelSwitzerland
  4. 4.Laboratoire Jean Kuntzmann, CNRS UMR 5224Université de GrenobleGrenobleFrance
  5. 5.CREATIS; CNRS UMR5220; Inserm U1044; INSA-LyonUniversité de LyonLyonFrance

Personalised recommendations