Advertisement

Signal, Image and Video Processing

, Volume 12, Issue 6, pp 1097–1105 | Cite as

Efficient multiple moving object detection and tracking using combined background subtraction and clustering

  • H. S. G. Supreeth
  • Chandrashekar M. Patil
Original Paper

Abstract

Object detection and tracking is a fundamental, challenging task in computer vision because of the difficulties in tracking. Continuous deformation of objects during movement and background clutter leads to poor tracking. In this paper, a method of multiple moving object detection and tracking by combining background subtraction and K-means clustering is proposed. The proposed method can handle objects occlusion, shadows and camera jitter. Background subtraction filters irrelevant information, and K-means clustering is employed to select the moving object from the remaining information, and it is capable of handling merging and splitting of moving objects using spatial information. Experimental results show that the proposed method is robust when compared to other techniques.

Keywords

Object detection Background subtraction K-means clustering Object tracking 

References

  1. 1.
    Elafi, I., Jedra, M., Zahid, N.: Unsupervised detection and tracking of moving objects for video surveillance applications. Pattern Recognit. Lett. 84, 70–77 (2016)CrossRefGoogle Scholar
  2. 2.
    Karasulu, B., Korukoglu, S.: Moving object detection and tracking by using annealed background subtraction method in videos: performance optimization. Expert Syst. Appl. 39, 33–43 (2012)CrossRefGoogle Scholar
  3. 3.
    Zhong, Q., Zhang, Q., Gao, T.: Moving object tracking based on codebook and particle filter. Proc. Eng. 29, 174–178 (2012)CrossRefGoogle Scholar
  4. 4.
    Lakhe, P.R., Kale, V.U.: Efficient motion estimation and detection, background subtraction, shadow removal and occlusion detection. Int. J. Eng. Res. Technol. 1(9), 1–4 (2012)Google Scholar
  5. 5.
    Ranjan, A., Chaple, M.: A novel approach for object detection and tracking. Int. J. Eng. Res. Technol. 2(4), 1248–1255 (2013)Google Scholar
  6. 6.
    Kim, H.B., Sim, K.B.: A particular object tracking in an environment of multiple moving objects. In: International Conference on Control, Automation and Systems (2010)Google Scholar
  7. 7.
    Lalitha, M., Kiruthiga, M., Loganathan, C.: A survey on image segmentation through clustering algorithm. Int. J. Sci. Res. 2(2), 348–358 (2013)Google Scholar
  8. 8.
    Hoi, C.H., Lyu, M.R.: A novel log based relevance feedback technique in content based image retrieval. In: Proceedings of the 12th Annual ACM International Conference on Multimedia, pp. 24–31 (2004)Google Scholar
  9. 9.
    Krishnamachari, S., Abdel, M.: Hierarchical clustering algorithm for fast image retrieval. In: Proceedings of SPIE, vol. 3656, Storage and Retrieval for Image and Video Databases VII, p. 427 (1998)Google Scholar
  10. 10.
    Georgescu, B., Shimshoni, I., Meer, P.: Mean shift based clustering in high dimensions: a texture classification example. In: Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV03), vol. 1, pp. 456–463 (2003)Google Scholar
  11. 11.
    Ohta, N.: A statistical approach to background suppression for surveillance system. In: Proceedings of IEEE International Conference on Computer Vision, pp. 481–486 (2001)Google Scholar
  12. 12.
    Haritaoglu, I., Harwood, D., Davis, L.S.: W4: who? when? where? what? A real time system for detecting and tracking people. In: IEEE International Conference on Automatic Face and Gesture Recognition, pp. 222–227 (1998)Google Scholar
  13. 13.
    Stauffer, C., Eric, W., Grimson, L.: Learning patterns of activity using real-time tracking. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 747–757 (2000)CrossRefGoogle Scholar
  14. 14.
    Collins, R., Lipton,A., Kanade,T.: A system for video surveillance and monitoring. In: Proceedings of American Nuclear Society (ANS) Eighth International Topical Meeting on Robotic and Remote Systems, pp. 25–29 (1999)Google Scholar
  15. 15.
    Carmona, E.J., Cantos, M., Mira, J.: A new video segmentation method of moving objects based on blob-level knowledge. Pattern Recognit. Lett. 29(3), 272–285 (2008)CrossRefGoogle Scholar
  16. 16.
    Franois, A.R.J.: CAMSHIFT tracker design experiments with Intel OpenCV and SAI. IRIS Technical Report IRIS-04-423, University of Southern California, Los Angeles (2004)Google Scholar
  17. 17.
    Pauwels, K., Van Hulle, M.M.: Optic flow from unstable sequences through local velocity constancy maximization. Image Vis. Comput. 27(5), 579–587 (2009)CrossRefGoogle Scholar
  18. 18.
    Dagher, I., Tom, K.E.: WaterBalloons: a hybrid watershed balloon snake segmentation. Image Vis. Comput. 26, 905–912 (2008)CrossRefGoogle Scholar
  19. 19.
    Wang, T., Gu, I.Y.H, Viberg, M., Cao, Z., Song, N.: Tracking moving objects in video using enhanced mean shift and region-based motion field. In: 15th European Signal Processing Conference (EUSIPCO, 2007) (2007)Google Scholar
  20. 20.
    Guo, Y., Han, D., Yang, Y.: Video moving object detection based on decision fusion. In: International Conference on Mechatronics and Control (ICMC) (2014)Google Scholar
  21. 21.
    Joy, A., Jayanthi, V.S., Baskar, D.: Automatic object detection in car-driving sequence using neural network and optical flow analysis. In: IEEE International Conference on Computational Intelligence and Computing Research (2014)Google Scholar
  22. 22.
    Sindhia, L., Hariharan, K.B., Kumar, D.: Efficient detection tracking of multiple moving objects in temporal domain. In: Fifth International Conference on Recent Trends in Information Technology (2016)Google Scholar
  23. 23.
    Chu, T.W., Su, S.F., Chen, M.C., Xu, S.S.D..: Edge enhanced SIFT for moving object detection. In: 3rd International Conference on Informative and Cybernetics for Computational Social Systems (ICCSS) (2016)Google Scholar
  24. 24.
    Zaki, W.M.D.B.W., Aini, H., Hedayati, M.: Moving object detection using keypoints reference model. EURASIP J. Image Video Process. 2011, 13–20 (2011)CrossRefGoogle Scholar
  25. 25.
    Wang, Z., Cui, J., Zha, H., Kagesawa, M., Ono, S., Ikeuchi, K.: Foreground object detection by motion-based grouping of object parts. Int. J. Intell. Transp. Syst. Res. 12(2), 70–82 (2014)Google Scholar
  26. 26.
    Pedda Sadhu Naik, P., Venu Gopal, T.: A novel approach for color image segmentation using iterative partitioning mean shift clustering algorithm. In: International Conference on Communications and Signal Processing (ICCSP), pp. 1516–1519 (2015)Google Scholar
  27. 27.
    Hua, C., Wu, H., Chen, Q., Wada, T.: K-means tracker: a general algorithm for tracking people. J. Multimed. 1(4), 46–53 (2006)Google Scholar
  28. 28.
    Cucchiara, R., Grana, C., Piccardi, M., Prati, A.: Detecting moving objects, ghosts, and shadows in video streams. IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1337–1442 (2003)CrossRefGoogle Scholar
  29. 29.
    Oliver, N.M., Rosario, B., Pentland, A.P.: A Bayesian computer vision system for modeling human interactions. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 831–843 (2000)CrossRefGoogle Scholar
  30. 30.
    Piccardi, M.: Background subtraction techniques: a review. In: IEEE International Conference Systems, Man and Cybernetics, vol. 4, pp. 3099–3104 (2004)Google Scholar
  31. 31.
    Hua, C., Wu, H., Chen, Q., Wada, T.: K-means clustering based pixel-wise object tracking. IPSJ Online Trans. 3, 820–833 (2008)Google Scholar
  32. 32.
    Zivkovic, Z., van der Heijden, F.: Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recognit. Lett. 27(7), 773–780 (2006)CrossRefGoogle Scholar
  33. 33.
    Teknomo, K.: K-means clustering tutorials. http://people.revoledu.com/kardi/tutorial/kMean/ (2007)
  34. 34.
    Swain, M.J., Ballard, D.H.: Color indexing. Int. J. Comput. Vis. 7(1), 11–32 (1991)CrossRefGoogle Scholar
  35. 35.
    Goyette, N., Jodoin, P.M., Porikli, F., Konrad, J., Ishwar, P.: Changedetection.net: a new change detection benchmark dataset. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–8 (2012)Google Scholar
  36. 36.
    Varadarajan, S., Miller, P., Zhou, H.: Spatial mixture of Gaussians for dynamic background modelling. In: 10th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 63–68 (2013)Google Scholar
  37. 37.
    Varghese, A., Sreelekha, G.: Sample based integrated background subtraction and shadow detection. IPSJ Trans. Comput. Vis. Appl. 9, 25 (2017)CrossRefGoogle Scholar
  38. 38.
    Sajid, H., Cheung, S.C.-S.: Background subtraction for static and moving camera. In: IEEE International Conference on Image Processing (ICIP), pp. 4530–4534 (2015)Google Scholar
  39. 39.
    De Gregorio, M., Giordano, M.: Change detection with weightless neural networks. In: IEEE Workshop on Change Detection (2014)Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.SJB Institute of TechnologyBangaloreIndia
  2. 2.Vidya Vardhaka College of EngineeringMysoreIndia

Personalised recommendations