Signal, Image and Video Processing

, Volume 12, Issue 6, pp 1087–1096 | Cite as

Local maximum likelihood segmentation of echocardiographic images with Rayleigh distribution

  • Ahror BelaidEmail author
  • Djamal Boukerroui
Original Paper


In order to interpret ultrasound images, it is important to understand their formation and the properties that affect them, especially speckle noise. This image texture, or speckle, is a correlated and multiplicative noise that inherently occurs in all types of coherent imaging systems. Indeed, its statistics depend on the density and on the type of scatterers in the tissues. This paper presents a new method for echocardiographic images segmentation in a variational level set framework. A partial differential equation-based flow is designed locally in order to achieve a maximum likelihood segmentation of the region of interest. A Rayleigh probability distribution is considered to model the local B-mode ultrasound images intensities. In order to confront more the speckle noise and local changes of intensity, the proposed local region term is combined with a local phase-based geodesic active contours term. Comparison results on natural and simulated images show that the proposed model is robust to attenuations and captures well the low-contrast boundaries.


Echocardiography Level set segmentation Local phase Monogenic signal Maximum likelihood 



The authors would like to thank Rabeh Djabri for English proofreading and Dr. Mathiron and Dr. Levy for their help in the clinical evaluation. Part of this work was funded by the Regional Council of Picardie and European Union/FEDER.


  1. 1.
    Ahn, C.Y., Jung, Y.M., Kwon, O.I., Seo, J.K.: Fast segmentation of ultrasound images using robust Rayleigh distribution decomposition. Pattern Recognit. 45(9), 3490–3500 (2012)CrossRefzbMATHGoogle Scholar
  2. 2.
    Alessandrini, M., Basarab, A., Liebgott, H., Bernard, O.: Myocardial motion estimation from medical images using the monogenic signal. IEEE Trans. Image Process. 22(3), 1084–1095 (2013). MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Belaid, A., Boukerroui, D.: \(\alpha \) scale spaces filters for phase based edge detection in ultrasound images. In: IEEE International Symposium on Biomedical Imaging, pp. 1247–1250. Beijing, China (2014)Google Scholar
  4. 4.
    Belaid, A., Boukerroui, D.: A new generalised \(\alpha \) scale spaces quadrature filters. Pattern Recognit. 47(10), 3209–3224 (2014)CrossRefzbMATHGoogle Scholar
  5. 5.
    Belaid, A., Boukerroui, D., Maingourd, Y., Lerallut, J.F.: Implicit active contours for ultrasound images segmentation driven by phase information and local maximum likelihood, pp. 630–635. Chicago, IL, USA (2011)Google Scholar
  6. 6.
    Belaid, A., Boukerroui, D., Maingourd, Y., Lerallut, J.F.: Phase based level set segmentation of ultrasound images. IEEE Trans. Inf. Technol. Biomed. 15(1), 138–147 (2011)CrossRefGoogle Scholar
  7. 7.
    Bosch, J., Mitchell, S., Lelieveldt, B.P., Nijland, F., Kamp, O., Sonka, M., Reiber, J.H.: Automatic segmentation of echocardiographic sequences by active appearance motion models. IEEE Trans. Med. Imaging 21(11), 1373–1383 (2002)CrossRefGoogle Scholar
  8. 8.
    Boukerroui, D.: A local Rayleigh model with spatial scale selection for ultrasound image segmentation. In: British Machine Vision Conference, BMVC 2012, Surrey, UK, September 3–7, 2012, pp. 1–12 (2012)Google Scholar
  9. 9.
    Boukerroui, D., Baskurt, A., Noble, J.A., Basset, O.: Segmentation of ultrasound images: multiresolution 2D and 3D algorithm based on global and local statistics. Pattern Recognit. Lett. 24(4–5), 779–790 (2003)CrossRefGoogle Scholar
  10. 10.
    Boukerroui, D., Noble, J.A., Robini, M.C., Brady, J.: Enhancement of contrast regions in sub-optimal ultrasound images with application to echocardiography. Ultrasound Med. Biol. 27(12), 1583–1594 (2001)CrossRefGoogle Scholar
  11. 11.
    Brox, T., Cremers, D.: On local region models and a statistical interpretation of the piecewise smooth mumford-shah functional. Int. J. Comput. Vis. 84(2), 184–193 (2009)CrossRefGoogle Scholar
  12. 12.
    Chesnaud, C., Refregier, P., Boulet, V.: Statistical region snake-based segmentation adapted to different physical noise models. IEEE Trans. Pattern Anal. Mach. Intell. 21(11), 1145–1157 (1999)CrossRefGoogle Scholar
  13. 13.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)CrossRefzbMATHGoogle Scholar
  14. 14.
    Chalana, V., Linker, D.T., Haynor, D.R., Kim, Y.: A multiple active contour model for cardiac boundary detection on echocardiographic sequences. IEEE Trans. Med. Imaging 15(3), 290–298 (1996)CrossRefGoogle Scholar
  15. 15.
    Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models—their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995)CrossRefGoogle Scholar
  16. 16.
    Cremers, D., Rousson, M., Deriche, R.: A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape. Int. J. Comput. Vis. 72(2), 195–215 (2007)CrossRefGoogle Scholar
  17. 17.
    Dietenbeck, T., Alessandrini, M., Barbosa, C., D’Hooge, J., Friboulet, D., Bernard, O.: Detection of the whole myocardium in 2D-echocardiography for multiple orientations using a geometrically constrained level-set. Med. Image Anal. 16(2), 386–401 (2012). CrossRefGoogle Scholar
  18. 18.
    Drukker, K., Giger, M.L., Mendelson, E.B.: Computerized detection and classification of cancer on breast ultrasound. Acad. Radiol. 11(5), 526–535 (2004)CrossRefGoogle Scholar
  19. 19.
    Dutt, V., Greenleaf, J.F.: Ultrasound echo envelope analysis using a homodyned K distribution signal model. Ultrason. Imaging 16(4), 265–287 (1994)CrossRefGoogle Scholar
  20. 20.
    Eltoft, T.: The Rician inverse gaussian distribution: a new model for non-rayleigh signal amplitude statistics. IEEE Trans. Image Process. 14(11), 1722–1735 (2005)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Felsberg, M., Sommer, G.: The monogenic signal. IEEE Trans. Signal Process. 49(49), 3136–3144 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Felsberg, M., Sommer, G.: The monogenic scale-space: a unifying approach to phase-based image processing in scale-space. J. Math. Imaging Vis. 21(1), 5–26 (2004)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Fernandes, D., Sekine, M.: Suppression of Weibull radar clutter. IEICE Trans. Commun. E76–B, 1231–1235 (1993)Google Scholar
  24. 24.
    Heimann, T., Meinzer, H.P.: Statistical shape models for 3D medical image segmentation: a review. Med. Image Anal. 13(4), 543–563 (2009)CrossRefGoogle Scholar
  25. 25.
    Jacob, G., Noble, J., Behrenbruch, C., Kelion, A., Banning, A.: A shape-space-based approach to tracking myocardial borders and quantifying regional left-ventricular function applied in echocardiography. IEEE Trans. Med. Imaging 21(3), 226–238 (2002)CrossRefGoogle Scholar
  26. 26.
    Jardim, S., Figueiredo, M.: Segmentation of fetal ultrasound images. Ultrasound Med. Biol. 31(2), 243–250 (2005)CrossRefGoogle Scholar
  27. 27.
    Jensen, J.A.,: Field: a program for simulating ultrasound systems In: 10th Nordic-Baltic Conference on Biomedical Imaging, vol .34, pp. 351–353 (1996)Google Scholar
  28. 28.
    Kovesi, P.: Image features from phase congruency. Videre J. Comput. Vis. Res. 1(3), 1–26 (1999)Google Scholar
  29. 29.
    Lankton, S., Tannenbaum, A.: Localizing region-based active contours. IEEE Trans. Image Process. 17(11), 2029–2039 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Li, C., Kao, C., Gore, J., Ding, Z.: Implicit active contours driven by local binary fitting energy. In: Proceedings of IEEE Conference on Computer Vision Pattern Recognition (CVPR), pp. 1–7. IEEE Computer Society, Washington (2007)Google Scholar
  31. 31.
    Lin, N., Yu, W., Duncan, J.S.: Combinative multi-scale level set framework for echocardiographic image segmentation. Med. Image Anal. 7, 529–537 (2003)CrossRefzbMATHGoogle Scholar
  32. 32.
    Martin-Fernandez, M., Alberola-Lopez, C.: An approach for contour detection of human kidneys from ultrasound images using markov random fields and active contours. Med. Image Anal. 9(1), 21–23 (2005)Google Scholar
  33. 33.
    Mignotte, M., Collet, C., Pérez, P., Bouthemy, P.: Three-class Markovian segmentation of high-resolution sonar images. CVIU 76(3), 191–204 (1999)Google Scholar
  34. 34.
    Morrone, M.C., Burr, D.C.: Feature detection in human vision: a phase-dependent energy model. In: Proceedings of the Royal Society of London, Series B, vol. 235, pp. 221–245 (1988)Google Scholar
  35. 35.
    Mulet-Parada, M., Noble, J.A.: 2D+T acoustic boundary detection in echocardiography. In: MICCAI, pp. 806–813. Springer, London (1998)Google Scholar
  36. 36.
    Mulet-Parada, M., Noble, J.A.: 2D+ T acoustic boundary detection in echocardiography. Med. Image Anal. 4(1), 21–30 (2000)CrossRefGoogle Scholar
  37. 37.
    Noble, J.A.: Ultrasound image segmentation and tissue characterization. Proc. IMechE H J. Eng. Med. 224(2), 307–316 (2010)CrossRefGoogle Scholar
  38. 38.
    Noble, J.A., Boukerroui, D.: Ultrasound image segmentation: a survey. IEEE Trans. Med. Imaging 25(8), 987–1010 (2006)CrossRefGoogle Scholar
  39. 39.
    Papadogiorgaki, M., Mezaris, V., Chatzizisis, Y.S., Giannoglou, G.D., Kompatsiaris, I.: Image analysis techniques for automated IVUS contour detection. Ultrasound Med. Biol. 34(9), 1482–1498 (2008)CrossRefGoogle Scholar
  40. 40.
    Paragios, N., Jolly, M.P., Taron, M., Ramaraj, R.: Active shape models & segmentation of the left ventricle in echocardiography. In: International Conference on Scale Space Theories and PDEs methods in Computer Vision. Lecture Notes in Computer Science, vol. 3459, pp. 131–142 (2005)Google Scholar
  41. 41.
    Porras, A., Alessandrini, M., De Craene, M., Duchateau, N., Sitges, M., Bijnens, B., Delingette, H., Sermesant, M., D’Hooge, J., Frangi, A., Piella, G.: Improved myocardial motion estimation combining tissue Doppler and B-mode echocardiographic images. IEEE Trans. Med. Imaging 33(11), 2098–2106 (2014). CrossRefGoogle Scholar
  42. 42.
    Raju, B.I., Srinivasan, M.A.: Statistics of envelope of high-frequency ultrasonic backscatter from human skin in vivo. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(6), 871–882 (2002)CrossRefGoogle Scholar
  43. 43.
    Roy, S., Carass, A., Bazin, P.L., Resnick, S., Prince, J.L.: Consistent segmentation using a Rician classifier. Med. Image Anal. 16(6), 524–535 (2012)CrossRefGoogle Scholar
  44. 44.
    Sarti, A., Corsi, C., Mazzini, E., Lamberti, C.: Maximum likelihood segmentation of ultrasound images with Rayleigh distribution. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(6), 947–960 (2005)CrossRefGoogle Scholar
  45. 45.
    Shankar, P.M.: A general statistical model for ultrasonic backscattering from tissues. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(6), 727–736 (2000)CrossRefGoogle Scholar
  46. 46.
    Slabaugh, G., Unal, G., Wels, M., Fang, T., Rao, B.: Statistical region-based segmentation of ultrasound images. Ultrasound Med. Biol. 35(5), 781–795 (2009)CrossRefGoogle Scholar
  47. 47.
    Steen, E., Olstad, B.: Scale-space and boundary detection in ultrasonic imaging using nonlinear signal-adaptive anisotropic diffusion. In: Proceedings of SPIE Medical Imaging: Image processing (1994)Google Scholar
  48. 48.
    Song, Z., Awate, S.P., Licht, D.J., Gee J.C. :Clinical neonatal brain MRI segmentation using adaptive nonparametric data models and intensity-based Markov priors. In: Proceedings of Medical Image Computing and Computer Assisted Intervention, pp. 883-890 (2007)Google Scholar
  49. 49.
    Tao, Z., Tagare, H.: Tunneling descent level set segmentation of ultrasound images. In: IPMI, pp. 750–761 (2005)Google Scholar
  50. 50.
    Tohka, J., Dinov, I.D., Shattuck, D.W., Toga, A.W.: Brain MRI tissue classification based on local Markov random fields. Magn. Reson. Imaging 28(11), 557–573 (2010)CrossRefGoogle Scholar
  51. 51.
    Wang, L., He, L., Mishra, A., Li, C.: Active contours driven by local gaussian distribution fitting energy. Signal Process. 89, 2435–2447 (2009)CrossRefzbMATHGoogle Scholar
  52. 52.
    Zhu, Y., Papademetris, X., Sinusas, A.J., Duncan, J.S.: A coupled deformable model for tracking myocardial borders from real-time echocardiography using an incompressibility constraint. Med. Image Anal. 14(3), 429–448 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Medical Computing Laboratory (LIMED)University of Abderrahmane MiraBejaïaAlgeria
  2. 2.Mirada Medical LtdOxfordUK
  3. 3.Sorbonne universités, Université de Technologie de Compiègne, CNRS 7253 UMR/HeudiasycCompiègne CedexFrance

Personalised recommendations