Advertisement

Signal, Image and Video Processing

, Volume 12, Issue 6, pp 1079–1086 | Cite as

Diffusion augmented complex adaptive IIR algorithm for training widely linear ARMA models

  • Azam Khalili
Original Paper
  • 68 Downloads

Abstract

In this paper, our aim is to propose a fully distributed adaptive algorithm for learning the parameters of a widely linear autoregressive moving average model by measurements collected by a network. To this end, we consider a connected network where every node uses the augmented complex adaptive infinite impulse response (ACA-IIR) filter as the learning rule. We firstly formulate the learning problem as an optimization problem and resort to stochastic gradient optimization argument to solve it and derive the proposed algorithm, which will be referred to as diffusion ACAIIR (DACA-IIR) algorithm. We also introduce a reduced-complexity version of the DACA-IIR algorithm. We use both synthetic and real-world signals in our simulations where the results show that the proposed cooperative algorithm outperforms the noncooperative solution.

Keywords

Adaptive filter ARMA model Complex signal Diffusion Widely linear 

References

  1. 1.
    Zhang, T., Wang, B., Liu, S.: Widely linear rls constant modulus algorithm for complex-valued noncircular signals. J. Electron. 31(5), 416–426 (2014)CrossRefGoogle Scholar
  2. 2.
    de Aquino, F. J. A., da Rocha, C.A.F., Resende, L.S.: Accelerating the convergence of the widely linear lms algorithm for channel equalization. In: Telecommunications Symposium: International 2006, pp. 734–738 (2006)Google Scholar
  3. 3.
    Xia, Y., Mandic, D.P.: Widely linear adaptive frequency estimation of unbalanced three-phase power systems. IEEE Trans. Instrum. Meas. 61(1), 74–83 (2012)CrossRefGoogle Scholar
  4. 4.
    Khalili, A., Rastegarnia, A., Sanei, S.: Robust frequency estimation in three-phase power systems using correntropy-based adaptive filter. IET Sci. Meas. Technol. 9(8), 928–935 (2015)CrossRefGoogle Scholar
  5. 5.
    Kuh, A., Manloloyo, C., Corpuz, R., Kowahl, N.: Wind prediction using complex augmented adaptive filters. In: 2010 International Conference on Green Circuits and Systems (ICGCS), pp. 46–50 (2010)Google Scholar
  6. 6.
    Park, C., Took, C.C., Mandic, D.P.: Augmented complex common spatial patterns for classification of noncircular eeg from motor imagery tasks. IEEE Trans. Neural Syst. Rehabil. Eng. 22(1), 1–10 (2014)CrossRefGoogle Scholar
  7. 7.
    Li, L., Xia, Y., Jelfs, B., Cao, J., Mandic, D.P.: Modelling of brain consciousness based on collaborative adaptive filters. In: Neurocomputing, Seventh International Symposium on Neural Networks (ISNN 2010) Advances in Web Intelligence, vol. 76, no. 1, pp. 36–43 (2012)Google Scholar
  8. 8.
    Adali, T., Schreier, P.J., Scharf, L.L.: Complex-valued signal processing: the proper way to deal with impropriety. IEEE Trans. Signal Process. 59(11), 5101–5125 (2011)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Mandic, D., Goh, V.S.L.: Complex Valued Nonlinear Adaptive Filters: Noncircularity. Widely Linear and Neural Models. Wiley, New York (2009)CrossRefGoogle Scholar
  10. 10.
    Javidi, S., Pedzisz, M., Goh, S.L., Mandic, D.P.: The augmented complex least mean square algorithm. In: Proceedings of the 1st IARP Workshop on Cognitive Information Processing, pp. 54–57 (2008)Google Scholar
  11. 11.
    Khalili, A., Rastegarnia, A., Sanei, S.: Quantized augmented complex least-mean square algorithm: derivation and performance analysis. Signal Process. 121, 54–59 (2016)CrossRefGoogle Scholar
  12. 12.
    Xia, Y., Javidi, S., Mandic, D.P.: A regularised normalised augmented complex least mean square algorithm. In: Wireless Communication Systems (ISWCS): 7th International Symposium on 2010, pp. 355–359 (2010)Google Scholar
  13. 13.
    Xia, Y., Took, C.C., Mandic, D.P.: An augmented affine projection algorithm for the filtering of noncircular complex signals. Signal Process. 90(6), 1788–1799 (2010)CrossRefMATHGoogle Scholar
  14. 14.
    Douglas, S.C.: Widely-linear recursive least-squares algorithm for adaptive beamforming. In: 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2041–2044 (2009)Google Scholar
  15. 15.
    Dini, D.H., Mandic, D.P., Julier, S.J.: A widely linear complex unscented kalman filter. IEEE Signal Process. Lett. 18(11), 623–626 (2011)CrossRefGoogle Scholar
  16. 16.
    Took, C., Mandic, D.: Adaptive iir filtering of noncircular complex signals. IEEE Trans. Signal Process. 57(10), 4111–4118 (2009)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Johnson, C.: Adaptive iir filtering: current results and open issues. IEEE Trans. Inf. Theory 30(2), 237–250 (1984)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Regalia, P.A.: Adaptive IIR Filtering in Signal Processing and Control. Marcel Dekker, New York (1994)MATHGoogle Scholar
  19. 19.
    Chen, X., Parks, T.W.: Design of IIR filters in the complex domain. IEEE Trans. Acoust. Speech Signal Process. 38(6), 910–920 (1990)CrossRefGoogle Scholar
  20. 20.
    Vuerinckx, R., Rolain, Y., Schoukens, J., Pintelon, R.: Design of stable IIR filters in the complex domain by automatic delay selection. IEEE Trans. Signal Process. 44(9), 2339–2344 (1996)CrossRefGoogle Scholar
  21. 21.
    Navarro-Moreno, J.: Arma prediction of widely linear systems by using the innovations algorithm. IEEE Trans. Signal Process. 56(7), 3061–3068 (2008)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Shynk, J.: Adaptive IIR filtering. IEEE Acoust. Speech Signal Process. ASSP Mag. 6(2), 4–21 (1989)Google Scholar
  23. 23.
    Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks. IEEE Commun. Mag. 40(8), 102–114 (2002)CrossRefGoogle Scholar
  24. 24.
    Khalili, A., Rastegarnia, A., Bazzi, W.M., Rahmati, R.G.: Incremental augmented complex adaptive IIR algorithm for training 449 widely linear ARMA model. Signal Image Video Process. 11(3), 493–500 (2017)CrossRefGoogle Scholar
  25. 25.
    Li, L., Chambers, J.A., Lopes, C.G., Sayed, A.H.: Distributed estimation over an adaptive incremental network based on the affine projection algorithm. IEEE Trans. Signal Process. 58(1), 151–164 (2010)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Ram, S., Nedic, A., Veeravalli, V.: Stochastic incremental gradient descent for estimation in sensor networks. In: Conference Record of the Forty-First Asilomar Conference on 2007 Signals, Systems and Computers: ACSSC 2007, pp. 582–586 (2007)Google Scholar
  27. 27.
    Rastegarnia, A., Tinati, M.A., Khalili, A.: Performance analysis of quantized incremental LMS algorithm for distributed adaptive estimation. Signal Process. 90(8), 2621–2627 (2010)CrossRefMATHGoogle Scholar
  28. 28.
    Lopes, C.G., Sayed, A.H.: Randomized incremental protocols over adaptive networks. In: Proceedings. IEEE International Conference on Acoustics Speech, Signal Processing (ICASSP), Dallas, pp. 3514–3517 (2010)Google Scholar
  29. 29.
    Liu, Y., Tang, W.K.: Enhanced incremental LMS with norm constraints for distributed in-network estimation. Signal Process. 94, 373–385 (2014)CrossRefGoogle Scholar
  30. 30.
    Cattivelli, F., Sayed, A.: Diffusion LMS strategies for distributed estimation. IEEE Trans. Signal Process. 58(3), 1035–1048 (2010)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Lopes, C., Sayed, A.: Diffusion least-mean squares over adaptive networks: formulation and performance analysis. IEEE Trans. Signal Process. 56(7), 3122–3136 (2008)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Takahashi, N., Yamada, I., Sayed, A.: Diffusion least-mean squares with adaptive combiners: formulation and performance analysis. IEEE Trans. Signal Process. 58(9), 4795–4810 (2010)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Huang, S., Li, C.P: Distributed sparse total least-squares over networks. IEEE Trans. Signal Process. 99 (2015) (to appear)Google Scholar
  34. 34.
    Lee, J.-W., Kim, S.-E., Song, W.-J.: Data-selective diffusion LMS for reducing communication overhead. Signal Process. 113, 211–217 (2015)CrossRefGoogle Scholar
  35. 35.
    Fernandez-Bes, J., Azpicueta-Ruiz, L.A., Arenas-Garca, J., Silva, M.T.: Distributed estimation in diffusion networks using affine least-squares combiners. Digit. Signal Process. 36, 1–14 (2015)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Nedic, A., Ozdaglar, A.: Distributed subgradient methods for multi-agent optimization. IEEE Trans. Autom. Control 54(1), 48–61 (2009)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Olfati-Saber, R., Shamma, J.S.: Consensus filters for sensor networks and distributed sensor fusion. In: Proceedings of the 44th IEEE Conference on Decision and Control, pp. 6698–6703 (2005)Google Scholar
  38. 38.
    Towfic, Z.J., Sayed, A.H.: Adaptive penalty-based distributed stochastic convex optimization. IEEE Trans. Signal Process. 62(15), 3924–3938 (2014)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Lan, X., Ma, A.J., Yuen, P.C.: Multi-cue visual tracking using robust feature-level fusion based on joint sparse representation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1194–1201 (2014)Google Scholar
  40. 40.
    Lan, X., Ma, A.J., Yuen, P.C., Chellappa, R.: Joint sparse representation and robust feature-level fusion for multi-cue visual tracking. IEEE Trans. Image Process. 24(12), 5826–5841 (2015)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Lan, X., Zhang, S., Yuen, P.C.: Robust joint discriminative feature learning for visual tracking. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, ser. IJCAI’16. AAAI Press, pp. 3403–3410 (2016)Google Scholar
  42. 42.
    Lan, X., Yuen, P.C., Chellappa, R.: Robust mil-based feature template learning for object tracking. In: AAAI (2017)Google Scholar
  43. 43.
    Lan, X., Zhang, S., Yuen, P.C., Chellappa, R.: Learning common and feature-specific patterns: a novel multiple-sparse-representation-based tracker. In: IEEE Transactions on Image Processing.  https://doi.org/10.1109/TIP.2017.2777183 (to appear)
  44. 44.
    Shi, W., Ling, Q., Yuan, K., Wu, G., Yin, W.: On the linear convergence of the admm in decentralized consensus optimization. IEEE Trans. Signal Process. 62(7), 1750–1761 (2014)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Xia, Y., Mandic, D.P., Sayed, A.H.: An adaptive diffusion augmented clms algorithm for distributed filtering of noncircular complex signals. IEEE Signal Process. Lett. 18(11), 659–662 (2011)CrossRefGoogle Scholar
  46. 46.
    Lopes, C.G., Sayed, A.H.: Diffusion least-mean squares over adaptive networks: formulation and performance analysis. IEEE Trans. Signal Process. 56(7), 3122–3136 (2008)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical EngineeringMalayer UniversityMalayerIran

Personalised recommendations