Advertisement

Signal, Image and Video Processing

, Volume 13, Issue 3, pp 439–445 | Cite as

Improved HEVC \(\lambda \)-domain rate control algorithm for HDR video

  • Junaid MirEmail author
  • Dumidu S. Talagala
  • Anil Fernando
  • Syed Sameed Husain
Original Paper
  • 109 Downloads

Abstract

Widespread high dynamic range (HDR) video distribution via transmission and broadcast is imminent in the near future. However, the rate control (RC) algorithms in video coding standards, like high-efficiency video coding (HEVC), are optimized and designed for low dynamic range (LDR) content—making them inefficient in the rate-distortion (RD) sense, when applied to HDR video compression and distribution. In this paper, we propose a non-normative change to the HM16.2 HEVC \(\lambda \)-domain RC algorithm to achieve high-fidelity HDR video distribution. A new \(\lambda \)-QP relation is modeled for HDR content after assessing the suitable RD model. The results indicate that the proposed RC algorithm outperforms the default RC algorithm in HEVC, achieving on average performance gains of 1.40 dB, 0.685 units, and 0.0155 units in terms of PU-PSNR, HDR-VDP-2.2 Q factor, and HDR-VQM, respectively. Further, proposed method has bit estimation accuracy similar to the default HEVC RC algorithm. Also, the subjective evaluations corroborate the significance of the performance gained in the objective metrics.

Keywords

HDR Rate control HEVC Rate-distortion R-\(\lambda \) model 

Notes

References

  1. 1.
    Luthra, A., Francois, E., Husak, W.: Call for evidence (CfE) for HDR and WCG video coding. ISO/IEC JTC1/SC29/WG11 MPEG2014 N, 15083 (2015)Google Scholar
  2. 2.
    Li, Bin, Li, Houqiang, Li, Li, Zhang, Jinlei: \( \lambda - \) domain rate control algorithm for high efficiency video coding. IEEE Trans. Image Process. 23(9), 3841–3854 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chiang, Tihao, Zhang, Ya-Qin: A new rate control scheme using quadratic rate distortion model. IEEE Trans. Circuits Syst. Video Technol. 7(1), 246–250 (1997)CrossRefGoogle Scholar
  4. 4.
    He, Zhihai, Kim, Yong Kwan, Mitra, Sanjit K: Low-delay rate control for DCT video coding via \(\rho -\)domain source modeling. IEEE Trans. Circuits Syst. Video Technol. 11(8), 928–940 (2001)CrossRefGoogle Scholar
  5. 5.
    Boitard, R., Mantiuk, R.K., Pouli, T.: Evaluation of color encodings for high dynamic range pixels. SPIE J. Electron. Imaging 9394, 93941 (2015)Google Scholar
  6. 6.
    Boitard, Ronan, Pourazad, Mahsa T, Nasiopoulos, Panos, Slevinsky, Jim: Demystifying high-dynamic-range technology: a new evolution in digital media. IEEE Consum. Electron. Mag. 4(4), 72–86 (2015)CrossRefGoogle Scholar
  7. 7.
    Reinhard, E., Heidrich, W., Debevec, P., Pattanaik, S., Ward, G., Myszkowski, K.: High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting. Morgan Kaufmann, Burlington (2010)Google Scholar
  8. 8.
    Li, B, Xu, J., Dong, Z., Li, H.: QP refinement according to Lagrange multiplier for high efficiency video coding. In: IEEE International Symposium on Circuits and Systems (ISCAS) 477–480 (2013)Google Scholar
  9. 9.
    Bai, L., Song, L., Xie, R., Zhang, L., Luo, Z.: Rate control model for high dynamic range video. In: Visual Communications and Image Processing (VCIP), 2017 IEEE, pp. 1–4. IEEE (2017)Google Scholar
  10. 10.
    Perez-Daniel, K.R., Sanchez, V.: Luma-aware multi-model rate-control for HDR content in HEVc. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 1022–1026. IEEE (2017)Google Scholar
  11. 11.
    High Efficiency Video Coding (HEVC) HM reference software. https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-16.2/
  12. 12.
    Aydın, T.O., Mantiuk, R., Seidel, H.-P.: Extending quality metrics to full luminance range images. SPIE J. Electron. Imaging 6806, 68060B (2008)Google Scholar
  13. 13.
    Sullivan, Gary J, Ohm, Jens, Han, Woo-Jin, Wiegand, Thomas: Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1649–1668 (2012)CrossRefGoogle Scholar
  14. 14.
    Krawczyk, G.: HDR video environment map samples (2012). http://resources.mpi-inf.mpg.de/hdr/video/
  15. 15.
    Kronander, J., Gustavson, S., Bonnet, G., Ynnerman, A., Unger, J.: LiU HDRv repository (2014). http://www.hdrv.org/Resources.php
  16. 16.
    Lasserre, S., LeLéannec, F., Francois, E.: Description of HDR sequences proposed by Technicolor. ISO/IEC JTC1/SC29/WG11 JCTVC-P0228], IEEE, San Jose, USA (2013)Google Scholar
  17. 17.
    Song, L., Liu, Y., Yang, X., Zhai, G., Xie, R., Zhang, W.: The SJTU HDR video sequence dataset. In: Proceedings of International Conference on Quality of Multimedia Experience (QoMEX 2016), p. 100 (2016)Google Scholar
  18. 18.
    Bossen, F.: Common test conditions and software reference configurations. In: Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, 5th Meeting (2011)Google Scholar
  19. 19.
    Mantiuk, R. K.: Practicalities of predicting quality of high dynamic range images and video. In: IEEE International Conference on Image Processing (ICIP), pp. 904–908 (2016)Google Scholar
  20. 20.
    High dynamic range television for production and international programme exchange (2016)Google Scholar
  21. 21.
    Narwaria, Manish, Mantiuk, Rafal K, Da Silva, Mattheiu Perreira, Le Callet, Patrick: HDR-VDP-2.2: a calibrated method for objective quality prediction of high-dynamic range and standard images. SPIE J. Electron. Imaging 24(1), 010501–010501 (2015)CrossRefGoogle Scholar
  22. 22.
    Narwaria, Manish, Da Silva, Matthieu Perreira, Le Callet, Patrick: HDR-VQM: an objective quality measure for high dynamic range video. Elsevier J. Signal Process. Image Commun. 35, 46–60 (2015)CrossRefGoogle Scholar
  23. 23.
    Bjontegaard, G.: Calculation of average PSNR differences between RD-curves. ITU SG16 Doc. VCEG-M33 (2001)Google Scholar
  24. 24.
    Wang, Miaohui, Ngan, King Ngi, Li, Hongliang: An efficient frame-content based intra frame rate control for high efficiency video coding. IEEE Signal Process. Lett. 22(7), 896–900 (2015)CrossRefGoogle Scholar
  25. 25.
    ITU Radiocommunication Assembly: Methodology for the Subjective Assessment of the Quality of Television Pictures. International Telecommunication Union, Geneva (2003)Google Scholar
  26. 26.

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical EngineeringUniversity of Engineering and Technology (UET) TaxilaTaxilaPakistan
  2. 2.Center for Vision Speech and Signal Processing (CVSSP)University of SurreyGuildfordUK

Personalised recommendations