Advertisement

Skin lesion segmentation using object scale-oriented fully convolutional neural networks

  • Lin Huang
  • Yi-gong ZhaoEmail author
  • Tie-jun Yang
Original Paper
  • 15 Downloads

Abstract

Melanoma is the deadliest form of skin cancer, and its incidence level is increasing. It is important to obtain a diagnosis at an early stage to increase the patient survival rate. Skin lesion segmentation is a difficult problem in medical image analysis. To address this problem, we propose end-to-end object scale-oriented fully convolutional networks (OSO–FCNs) for skin lesion segmentation. Given a single skin lesion image, the proposed method produces a pixel-level mask for skin lesion areas. We found that the scale of the lesions in the training dataset affects a large number of the segmentation results of the lesions in the testing phase, and thus, a training strategy called object scale-oriented (OSO) training is proposed. First, the pre-trained network of VGG-16 is adapted and is transformed into fully convolutional networks (FCNs). Second, after very simple preprocessing, skin lesion images with boundary-level annotations are fed into the FCNs for fine-tuning training based on the pre-trained model using OSO training. During the OSO training, the training dataset is divided into 2 subsets according to an index called the object occupation ratio, and then the whole training dataset and the 2 subsets are used to train 3 different scale-oriented FCNs. A dataset provided by the International Skin Imaging Collaboration (ISIC), ISIC2016, is used for training and testing. Our algorithm is compared with the state-of-the-art algorithms, and the experimental results demonstrate that the segmentation accuracy of our algorithm is higher or very close to the performances of the other algorithms.

Keywords

Skin lesion Melanoma Fully convolutional neural networks Object scale-oriented Image segmentation 

Notes

Acknowledgements

This research was partly supported by the Guangxi Natural Science Foundation (2018JJB170004), the Guangxi Basic Ability Promotion Project for Young and Middle-aged Teachers (2017KY0247), the Project of Cultivating a Thousand Young and Middle-aged Teachers in Guangxi Universities, the Guangxi Key Laboratory Fund of Embedded Technology and Intelligent System (2018A-07), and the Guangxi Universities Key Laboratory Fund of Embedded Technology and Intelligent Information Processing (2017-1-1, 2017-2-4). Additionally, we would like to thank NVIDIA for providing the Titan X GPU used in this research.

References

  1. 1.
    Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2018. CA Cancer J. Clin. 68(1), 7–30 (2018)CrossRefGoogle Scholar
  2. 2.
    American Cancer Society What are the key statistics about melanoma skin cancer? (2015). http://www.cancer.org/cancer/skincancer-melanoma/detailedguide/melanoma-skin-cancer-key-statistics. Accessed 16 Aug 2015
  3. 3.
    Celebi, M.E., Iyatomi, H., Schaefer, G., Stoecker, W.V.: Lesion border detection in dermoscopy images. Comput. Med. Imaging Graph. 33(2), 148–153 (2009)CrossRefGoogle Scholar
  4. 4.
    Gutman, D., Codella, N.C.F., Celebi, E., Helba, B., Marchetti, M., Mishra, N., Halpern, A.: Skin lesion analysis toward melanoma detection: a challenge at the International Symposium on Biomedical Imaging (ISBI) 2016, hosted by the International Skin Imaging Collaboration (ISIC). In: IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) (2016). arXiv:1605.01397 [cs.CV]
  5. 5.
    Garnavi, R., Aldeen, M., Celebi, M.E., Varigos, G., Finch, S.: Border detection in dermoscopy images using hybrid thresholding on optimized color channels. Comput. Med. Imaging Graph. 35(2), 105–115 (2011)CrossRefGoogle Scholar
  6. 6.
    Celebi, E.M., Quan, W., Sae, H., Hitoshi, I., Gerald, S.: Lesion border detection in dermoscopy images using ensembles of thresholding methods. Skin Res. Technol. 19(1), e252–e258 (2013)CrossRefGoogle Scholar
  7. 7.
    Peruch, F., Bogo, F., Bonazza, M., Cappelleri, V.M., Peserico, E.: Simpler, faster, more accurate melanocytic lesion segmentation through MEDS. IEEE Trans. Biomed. Eng. 61(2), 557–565 (2013)CrossRefGoogle Scholar
  8. 8.
    Ma, Z., Tavares, J.M.R.S.: A novel approach to segment skin lesions in dermoscopic images based on a deformable model. IEEE J. Biomed. Health Inform. 20(2), 615–623 (2016)CrossRefGoogle Scholar
  9. 9.
    Zhou, H., Schaefer, G., Sadka, A.H., Celebi, M.E.: Anisotropic mean shift based fuzzy c-means segmentation of dermoscopy images. IEEE J. Sel. Top. Signal Process. 3(1), 26–34 (2009)CrossRefGoogle Scholar
  10. 10.
    Ashour, A.S., Hawas, A.R., Guo, Y., Wahba, M.A.: A novel optimized neutrosophic k-means using genetic algorithm for skin lesion detection in dermoscopy images. Signal Image Video Process. 12(7), 1311–1318 (2018)CrossRefGoogle Scholar
  11. 11.
    Gomez, D.D., Butakoff, C., Ersboll, B.K., Stoecker, W.: Independent histogram pursuit for segmentation of skin lesions. IEEE Trans. Biomed. Eng. 55(1), 157–161 (2008)CrossRefGoogle Scholar
  12. 12.
    Iyatomi, H., Oka, H., Celebi, M.E., Hashimoto, M., Hagiwara, M., Tanaka, M., Ogawa, K.: An improved Internet-based melanoma screening system with dermatologist-like tumor area extraction algorithm. Comput. Med. Imaging Graph. 32(7), 566–579 (2008)CrossRefGoogle Scholar
  13. 13.
    Celebi, M., Kingravi, H.H., Aslandogan, Y., Stoecker, W., Moss, R., Malters, J., Grichnik, J., Marghoob, A., Rabinovitz, H., Menzies, S.: Border detection in dermoscopy images using statistical region merging. Skin Res. Technol. 14(3), 347–353 (2008)CrossRefGoogle Scholar
  14. 14.
    Celebi, M.E., Asl, Y.A., Stoecker, W.V., Iyatomi, H., Oka, H., Chen, X.: Skin research and technology unsupervised border detection in dermoscopy images. Skin Res. Technol. 13(4), 377–384 (2007)CrossRefGoogle Scholar
  15. 15.
    Arakeri, M.P., Reddy, G.R.M.: Computer-aided diagnosis system for tissue characterization of brain tumor on magnetic resonance images. Signal Image Video Process. 9(2), 409–425 (2015)CrossRefGoogle Scholar
  16. 16.
    An, N.-Y., Pun, C.-M.: Color image segmentation using adaptive color quantization and multiresolution texture characterization. Signal Image Video Process. 8(5), 943–954 (2014)CrossRefGoogle Scholar
  17. 17.
    Celebi, M.E., Mendonca, T., Marques, J.S. (eds.): A state-of-the- art survey on lesion border detection in dermoscopy images. In: Dermoscopy image analysis, pp. 97-129. CRC Press, Boca Raton, FL (2015). https://www.taylorfrancis.com/books/9781482253269
  18. 18.
    Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Lécun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRefGoogle Scholar
  20. 20.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 25(2), 1106–1114 (2012)Google Scholar
  21. 21.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014). arXiv.org/abs/1409.1556
  22. 22.
    Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 79(10), 1337–1342 (2015)Google Scholar
  23. 23.
    Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRefGoogle Scholar
  24. 24.
    Codella, N., Cai, J., Abedini, M., Garnavi, R., Halpern, A., Smith, J.R.: Deep learning, sparse coding, and SVM for melanoma recognition in dermoscopy images. In: International Workshop on Machine Learning in Medical Imaging, pp. 118–126 (2015)Google Scholar
  25. 25.
    Yoshida, T., Celebi, M.E., Schaefer, G., Iyatomi, H.: Simple and effective pre-processing for automated melanoma discrimination based on cytological findings. In: 2016 IEEE International Conference on Big Data (Big Data), pp. 3439–3442. (2016)Google Scholar
  26. 26.
    Barata, A.C.F., Celebi, E.M., Marques, J.: A survey of feature extraction in dermoscopy image analysis of skin cancer. IEEE J. Biomed. Health Inform. (2018).  https://doi.org/10.1109/jbhi.2018.2845939 Google Scholar
  27. 27.
    Jafari, M.H., Nasresfahani, E., Karimi, N., Soroushmehr, S.M.R., Samavi, S., Najarian, K.: Extraction of skin lesions from non-dermoscopic images using deep learning (2016). arXiv.org/abs/1609.02374
  28. 28.
    Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)CrossRefGoogle Scholar
  29. 29.
    Yuan, Y., Ming, C., Lo, Y.C.: Automatic skin lesion segmentation using deep fully convolutional networks with jaccard distance. IEEE Trans. Med. Imaging 36(9), 1876–1886 (2017)CrossRefGoogle Scholar
  30. 30.
    Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 675–678. Orlando, FL (2014)Google Scholar
  31. 31.
    Yu, L., Chen, H., Dou, Q., Qin, J., Heng, P.A.: Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Trans. Med. Imaging 36(4), 994–1004 (2017)CrossRefGoogle Scholar
  32. 32.
    Bi, L., Kim, J., Ahn, E., Kumar, A., Fulham, M., Feng, D.: Dermoscopic image segmentation via multistage fully convolutional networks. IEEE Trans. Biomed. Eng. 64(9), 2065–2074 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Xidian UniversityXi’anChina
  2. 2.Guangxi Key Laboratory of Embedded Technology and Intelligent SystemGuilin University of TechnologyGuilinChina

Personalised recommendations