Advertisement

TOP

pp 1–12 | Cite as

A note on assignment games with the same nucleolus

  • F. Javier Martínez-de-AlbénizEmail author
  • Carlos Rafels
  • Neus Ybern
Original Paper
  • 6 Downloads

Abstract

We show that the family of assignment matrices which give rise to the same nucleolus forms a compact join-semilattice with one maximal element. The above family is, in general, not a convex set, but path-connected.

Keywords

Assignment game Core Nucleolus Semilattice 

Notes

Acknowledgements

Financial support from research grant ECO2017-86481-P (Ministerio de Economía y Competitividad, AEI/FEDER, UE) is gratefully acknowledged, and from the Generalitat de Catalunya, through grant 2017 SGR 778.

References

  1. Greco G, Malizia E, Palopoli L, Scarcello F (2015) The complexity of the nucleolus in compact games. ACM Trans Comput Theory (TOCT) 7(1):3Google Scholar
  2. Llerena F, Núñez M (2011) A geometric characterization of the nucleolus of the assignment game. Econ Bull 31(4):3275–3285Google Scholar
  3. Llerena F, Núñez M, Rafels C (2015) An axiomatization of the nucleolus of assignment games. Int J Game Theory 44:1–15CrossRefGoogle Scholar
  4. Martínez-de-Albéniz FJ, Rafels C, Ybern N (2013a) On the nucleolus of \(2 \times 2\) assignment games. Econ Bull 33(2):1641–1648Google Scholar
  5. Martínez-de-Albéniz FJ, Rafels C, Ybern N (2013b) A procedure to compute the nucleolus of the assignment game. Oper Res Lett 41:675–678CrossRefGoogle Scholar
  6. Martínez-de-Albéniz FJ, Rafels C, Ybern N (2015) Insights into the nucleolus of the assignment game. Working paper E15/333 Universitat de Barcelona, pp 1–32Google Scholar
  7. Núñez M (2004) A note on the nucleolus and the kernel of the assignment game. Int J Game Theory 33:55–65CrossRefGoogle Scholar
  8. Núñez M, Rafels C (2002) Buyer-seller exactness in the assignment game. Int J Game Theory 31:423–436CrossRefGoogle Scholar
  9. Núñez M, Rafels C (2015) A survey on assignment markets. J Dyn Games 3&4:227–256Google Scholar
  10. Schmeidler D (1969) The nucleolus of a characteristic function game. SIAM J Appl Math 17:1163–1170CrossRefGoogle Scholar
  11. Shapley LS, Shubik M (1972) The assignment game I: the core. Int J Game Theory 1:111–130CrossRefGoogle Scholar
  12. Solymosi T, Raghavan TES (1994) An algorithm for finding the nucleolus of assignment games. Int J Game Theory 23:119–143CrossRefGoogle Scholar
  13. Topkis DM (1998) Supermodularity and complementarity. Princeton University Press, PrincetonGoogle Scholar

Copyright information

© Sociedad de Estadística e Investigación Operativa 2019

Authors and Affiliations

  1. 1.Dept. de Matemàtica Econòmica, Financera i Actuarial and BEATUniversitat de BarcelonaBarcelonaSpain
  2. 2.Dept. de Matemàtiques, Escola Politècnica Superior d’EnginyeriaUniversitat Politècnica de CatalunyaVilanova i la GeltrúSpain

Personalised recommendations