Advertisement

TEST

, Volume 28, Issue 4, pp 1087–1091 | Cite as

Rejoinder on: Deville and Särndal’s calibration: revisiting a 25-year-old successful optimization problem

  • Denis DevaudEmail author
  • Yves Tillé
Discussion
  • 33 Downloads

We thank the discussants: Jean-François Beaumont and J.N.K Rao, Phillip S. Kott, Domingo Morales, Maria del Mar Rueda, Changbao Wu and Shixiao Zhang for their interest in our article. Their suggestions, criticisms and remarks provide very useful complements. They also report a list of interesting publications on calibration. Deville and Särndal’s article had a considerable impact on the theory and practice of survey sampling. In October 2019, Scopus mentions that the article has been cited 614 times. It is therefore very difficult to present an exhaustive survey of all the contributions made by the original article on calibration.

Response to Jean-François Beaumont and J.N.K. Rao

We would like to thank Jean-François Beaumont and J.N.K. Rao for their particularly thoughtful comments. We have probably failed to mention a large number of interesting publications on calibration. It is true that we should have quoted the article of Huang and Fuller (1978) who already raised a large number...

Notes

References

  1. Boistard H, Lopuhaä HP, Ruiz-Gazen A (2017) Functional central limit theorems for single-stage sampling designs. Ann Stat 45(4):1728–1758MathSciNetCrossRefGoogle Scholar
  2. Cardot H, Josserand E (2011) Horvitz-Thompson estimators for functional data: asymptotic confidence bands and optimal allocation for stratified sampling. Biometrika 98(1):107–118MathSciNetCrossRefGoogle Scholar
  3. Chang T, Kott PS (2008) Using calibration weighting to adjust for nonresponse under a plausible model. Biometrika 95:555–571MathSciNetCrossRefGoogle Scholar
  4. Cressie N, Read TRC (1984) Multinomial goodness-of-fit tests. J R Stat Soc Ser B (Methodol) 46(3):440–464MathSciNetzbMATHGoogle Scholar
  5. Deville JC (1998) La correction de la non-réponse par calage ou par échantillonnage équilibré. Technical report In see, Paris, recueil de la Section des méthodes d’enquêteGoogle Scholar
  6. Deville JC (2000) Generalized calibration and application to weighting for non-response. Compstat—proceedings in computational statistics: 14th symposium held in Utrecht. Springer, New York, pp 65–76CrossRefGoogle Scholar
  7. Deville JC (2002) La correction de la nonréponse par calage généralisé. Actes des Journées de Méthodologie Statistique. Insee-Méthodes, Paris, pp 3–20Google Scholar
  8. Deville JC (2004) Calage, calage généralisé et hypercalage. Technical report Insee ParisGoogle Scholar
  9. Deville JC, Dupont F (1993) Non-réponse: principes et méthodes. Actes des Journées de Méthodologie statistique. Insee, Paris, pp 53–70Google Scholar
  10. Deville JC, Särndal CE (1992) Calibration estimators in survey sampling. J Am Stat Assoc 87:376–382MathSciNetCrossRefGoogle Scholar
  11. Dupont F (1994) Calibration used as a nonresponse adjustment, studies in classification, data analysis, and knowledge organization. In: Diday E (ed) New approaches in classification and data analysis. Springer, Berlin, pp 539–548CrossRefGoogle Scholar
  12. Dupont F (1996) Calage et redressement de la non-réponse totale : Validité de la pratique courante de redressement et comparaison des méthodes alternatives pour l’enquête sur la consommation alimentaire de 1989. In: Actes des journées de méthodologie statistique, 15 et 16 décembre 1993, Insee-Méthodes No 56-57-58, Complément, pp 9–42Google Scholar
  13. Folsom RE, Singh AC (2000) The generalized exponential model for design weight calibration for extreme values, nonresponse and poststratification. In: Section on survey research methods, American Statistical Association, pp 598–603Google Scholar
  14. Graf M (2016) Tight calibration of survey weights. institut de Statistique, Université de NeuchâtelGoogle Scholar
  15. Guandalini A, Tillé Y (2017) Design-based estimators calibrated on estimated totals from multiple surveys. Int Stat Rev 85:250–269MathSciNetCrossRefGoogle Scholar
  16. Haziza D, Beaumont JF (2017) Construction of weights in surveys: a review. Stat Sci 32(2):206–226MathSciNetCrossRefGoogle Scholar
  17. Huang ET, Fuller WA (1978) Non-negative regression estimation for sample survey data. In: Proceedings of the social statistics section of the American Statistical Association, pp 300–305Google Scholar
  18. Iannacchione VG, Milne JG, Folsom RE (1991) Response probability weight adjustments using logistic regression. In: Proceedings of the survey research methods section. American Statistical Association, pp 637–42Google Scholar
  19. Kott PS (2006) Using calibration weighting to adjust for nonresponse and coverage errors. Surv Methodol 32:133–142Google Scholar
  20. Kott PS, Liao D (2012) Providing double protection for unit nonresponse with a nonlinear calibration-weighting routine. Surv Res Methods 6:105–111Google Scholar
  21. Le Guennec J, Sautory O (2002) CALMAR2: une nouvelle version de la macro CALMAR de redressement d’échantillon par calage. Actes des Journées de Méthodologie. Insee, Paris, pp 33–38Google Scholar
  22. Lesage É (2011) The use of estimating equations to perform a calibration on complex parameters. Surv Methodol 37(1):103–108Google Scholar
  23. Lesage É, Haziza D, D’Haultfoeuille X (2019) A cautionary tale on instrumental calibration for the treatment of nonignorable unit nonresponse in surveys. J Am Stat Assoc 114:906–915MathSciNetCrossRefGoogle Scholar
  24. Lundström S, Särndal CE (1999) Calibration as a standard method for treatment of nonresponse. J Off Stat 15:305–327Google Scholar
  25. Montanari GE, Ranalli MG (2005) Nonparametric model-calibration estimation in survey sampling. J Am Stat Assoc 100:1429–1442MathSciNetCrossRefGoogle Scholar
  26. Rebecq A (2017) icarus: Calibrates and Reweights Units in Samples, likelihood, estimation. R package version (3)Google Scholar
  27. Rebecq A (2019) Méthodes de sondage pour les données massives. PhD thesis, Université Paris NanterreGoogle Scholar
  28. Rényi A (1961) On measures of entropy and information. In: Proceedings of the 4th Berkeley symposium on mathematical statistics and probability, University of California Press, Berkeley, vol 1, pp 547–561Google Scholar
  29. Särndal CE, Lundström S (2005) Estimation in surveys with nonresponse. Wiley, New YorkCrossRefGoogle Scholar
  30. Vallée AA, Tillé Y (2019) Linearization for variance estimation by means of sampling indicators: application to nonresponse. Int Stat Rev 87(2):347–367MathSciNetCrossRefGoogle Scholar
  31. Vanderhoeft C (2001) Generalised calibration at Statistics Belgium SPSS module gCALIBS and current practices. Technical report, Statistics Belgium Working Paper No. 3Google Scholar
  32. Wu C, Sitter RR (2001) A model-calibration approach to using complete auxiliary information from survey data. J Am Stat Assoc 96:185–193MathSciNetCrossRefGoogle Scholar

Copyright information

© Sociedad de Estadística e Investigación Operativa 2019

Authors and Affiliations

  1. 1.Institut de statistiqueUniversité de NeuchâtelNeuchâtelSwitzerland

Personalised recommendations