, Volume 28, Issue 4, pp 1033–1065 | Cite as

Deville and Särndal’s calibration: revisiting a 25-years-old successful optimization problem

  • Denis DevaudEmail author
  • Yves Tillé
Invited Paper


In 1992, in a famous paper, Deville and Särndal proposed the calibration method in order to adjust samples on known population totals. This paper had a very important impact in the theory and practice of survey statistics. In this paper, we propose a rigorous formalization of the calibration problem viewed as an optimization problem. We examine the main calibration functions and we discuss the question of the existence of solutions. We also propose an alternate way of solving the optimization problem given by the calibration principle. We finally present a set of simulations in order to compare the different methods.


Calibration Estimation Regression Sampling Survey Weight 

Mathematics Subject Classification

62-03 62D05 



The authors thank the Swiss Federal Statistical Office (FSO) which partially supported this work as well as the three reviewers for their comments and efforts towards improving our manuscript.


  1. Andersson C, Lennart N (1998) A user’s guide to clan 97: a SAS-program for computation of point- and standard error estimates in sample survey. Technical report, Statistics SwedenGoogle Scholar
  2. Beaumont JF, Bocci C (2008) Another look at ridge calibration. Metron 66(1):5–20zbMATHGoogle Scholar
  3. Berger YG (2018) Empirical likelihood approaches in survey sampling. Surv Statistician 78:22–31Google Scholar
  4. Berger YG, De La Riva Torres O (2016) Empirical likelihood confidence intervals for complex sampling designs. J Roy Stat Soc B78(2):319–341MathSciNetzbMATHGoogle Scholar
  5. Bethlehem JG, Keller WJ (1987) Linear weighting of sample survey data. J Off Stat 3:141–153Google Scholar
  6. Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, CambridgezbMATHGoogle Scholar
  7. Brick MJ (2013) Unit nonresponse and weighting adjustments: a critical review. J Off Stat 29(3):329–353Google Scholar
  8. Cassel CM, Särndal CE, Wretman JH (1976) Some results on generalized difference estimation and generalized regression estimation for finite population. Biometrika 63:615–620MathSciNetzbMATHGoogle Scholar
  9. Chang T, Kott PS (2008) Using calibration weighting to adjust for nonresponse under a plausible model. Biometrika 95:555–571MathSciNetzbMATHGoogle Scholar
  10. Chaudhuri S, Handcock MS, Rendall MS (2008) Generalized linear models incorporating population level information: an empirical-likelihood-based approach. J R Stat Soc Ser B (Stat Methodol) 70(2):311–328MathSciNetzbMATHGoogle Scholar
  11. Chen J, Qin J (1993) Empirical likelihood estimation for finite populations and the effective usage of auxiliary information. Biometrika 80:107–116MathSciNetzbMATHGoogle Scholar
  12. Chen J, Sitter RR (1999) A pseudo empirical likelihood approach to the effective use of auxiliary information in complex surveys. Statistica Sinica 9:385–406MathSciNetzbMATHGoogle Scholar
  13. Chen J, Wu C (1999) Estimation of distribution function and quantiles using the model-calibrated pseudo empirical likelihood method. Statistica Sinica 12:1223–1239MathSciNetzbMATHGoogle Scholar
  14. Chen J, Sitter RR, Wu C (2002) Using empirical likelihood methods to obtain range restricted weights in regression estimators for surveys. Biometrika 89(1):230–237MathSciNetzbMATHGoogle Scholar
  15. Cholakian V (1980) Un exemple d’application de diverses méthodes d’ajustement d’un tableau à des marges imposées. Les Cahiers de l’Analyse des Données 5:173–176Google Scholar
  16. Cornfield J (1944) On samples from finite populations. J Am Stat Assoc 39:236–239MathSciNetzbMATHGoogle Scholar
  17. Davies G, Gillard J, Zhigljavsky A (2015) Calibration in survey sampling as an optimization problem. In: Migdalis A, Karakitsiou A (eds) Optimization, control, and applications in the information age. Springer, New York, pp 67–89zbMATHGoogle Scholar
  18. Deming WE (1948) Statistical adjustment of data. Wiley, New YorkzbMATHGoogle Scholar
  19. Deming WE (1950) Some theory of sampling. Dover Publications, New YorkzbMATHGoogle Scholar
  20. Deming WE, Stephan FF (1940) On a least square adjustment of sampled frequency table when the expected marginal totals are known. Ann Math Stat 11:427–444MathSciNetzbMATHGoogle Scholar
  21. Demnati A, Rao JNK (2004) Linearization variance estimators for survey data (with discussion). Surv Methodol 30:17–34Google Scholar
  22. Deville JC (1988) Estimation linéaire et redressement sur informations auxiliaires d’enquêtes par sondage. In: Monfort A, Laffond JJ (eds) Mélanges économiques: Essais en l’honneur de Edmond Malinvaud. Economica, Paris, pp 915–927Google Scholar
  23. Deville JC (1998) La correction de la non-réponse par calage ou par échantillonnage équilibré. Technical report, Insee, Paris, recueil de la Section des méthodes d’enquêteGoogle Scholar
  24. Deville JC (2000) Generalized calibration and application to weighting for non-response. In: Compstat - proceedings in computational statistics: 14th symposium held in Utrecht. The Netherlands, Springer, New York, pp 65–76Google Scholar
  25. Deville JC (2002) La correction de la nonréponse par calage généralisé. Actes des Journées de Méthodologie Statistique. Insee-Méthodes, Paris, pp 3–20Google Scholar
  26. Deville JC (2004) Calage, calage généralisé et hypercalage. Technical report, Insee, ParisGoogle Scholar
  27. Deville JC, Särndal CE (1990) Estimateur par calage et technique de ratissage généralisé dans les enquêtes par sondage. Technical report, Insee, ParisGoogle Scholar
  28. Deville JC, Särndal CE (1992) Calibration estimators in survey sampling. J Am Stat Assoc 87:376–382MathSciNetzbMATHGoogle Scholar
  29. Deville JC, Särndal CE, Sautory O (1993) Generalized raking procedure in survey sampling. J Am Stat Assoc 88:1013–1020zbMATHGoogle Scholar
  30. Dupont F (1994) Calibration used as a nonresponse adjustment. In: Diday E, Lechevallier Y, Schader M, Bertrand P, Burtschy B (eds) New approaches in classification and data analysis. Springer, Berlin, pp 539–548Google Scholar
  31. Estevao VM, Särndal CE (2000) A functional form approach to calibration. J Off Stat 16:379–399Google Scholar
  32. Estevao VM, Särndal CE (2006) Survey estimates by calibration on complex auxiliary information. Int Stat Rev 74:127–147Google Scholar
  33. Estevao VM, Hidiroglou MA, Särndal CE (1995) Methodological principles for a generalized estimation system at statistics canada. J Off Stat 11:181–204Google Scholar
  34. Froment R, Lenclud B (1976) Ajustement de tableaux statistiques. Annales de l’Insee 22–23:29–53MathSciNetGoogle Scholar
  35. Fuller WA, Isaki CT (1981) Currents topics in survey sampling. In: Krewski D, Platek R, Rao JNK (eds) Survey design under superpopulation models. Academic Press, New York, pp 196–226zbMATHGoogle Scholar
  36. Fuller WA, Loughin MM, Baker HD (1994) Regression weighting in the presence of nonresponse with application to the 19871988 nationwide food consumption survey. Surv Methodol 20:75–85Google Scholar
  37. Goga C, Shehzad MA (2010) Overview of ridge regression estimators in survey sampling. Technical report, Université de Bourgogne, Dijon, FranceGoogle Scholar
  38. Graf M (2011) Use of survey weights for the analysis of compositional data. In: Pawlowsky-Glahn V, Buccianti A (eds) Compositional data analysis: theory and applications. Wiley, Chichester, pp 114–127Google Scholar
  39. Guandalini A, Tillé Y (2017) Design-based estimators calibrated on estimated totals from multiple surveys. Int Stat Rev 85:250–269MathSciNetGoogle Scholar
  40. Guggemos F, Tillé Y (2010) Penalized calibration in survey sampling: design-based estimation assisted by mixed models. J Stat Plan Inference 140(11):3199–3212MathSciNetzbMATHGoogle Scholar
  41. Güler O (2010) Foundations of optimization, vol 258. Graduate texts in mathematics. Springer, New YorkzbMATHGoogle Scholar
  42. Hartley HO, Rao JNK (1968) A new estimation theory for sample survey. Biometrika 55:547–557zbMATHGoogle Scholar
  43. Haziza D, Lesage É (2016) A discussion of weighting procedures for unit nonresponse. J Off Stat 32(1):129–145Google Scholar
  44. Horvitz DG, Thompson DJ (1952) A generalization of sampling without replacement from a finite universe. J Am Stat Assoc 47:663–685MathSciNetzbMATHGoogle Scholar
  45. Huang ET, Fuller WA (1978) Non-negative regression estimation for sample survey data. In: Proceedings of the social statistics section of the American Statistical Association, pp 300–305Google Scholar
  46. Isaki CT, Fuller WA (1982) Survey design under a regression population model. J Am Stat Assoc 77:89–96zbMATHGoogle Scholar
  47. Kim JK, Park H (2010) Calibration estimation in survey sampling. Int Stat Rev/Revue Internationale de Statistique 78(1):21–39Google Scholar
  48. Kott PS (1994) A note on handling nonresponse in surveys. J Am Stat Assoc 89:693–696MathSciNetzbMATHGoogle Scholar
  49. Kott PS (2006) Using calibration weighting to adjust for nonresponse and coverage errors. Surv Methodol 32:133–142Google Scholar
  50. Kott PS (2009) Calibration weighting: combining probability samples and linear prediction models. In: Pfeffermann D, Rao CR (eds) Handbook of statistics, Part B: sampling, vol 29. Elsevier/North-Holland, New York, Amsterdam, pp 55–82Google Scholar
  51. Kott PS, Chang T (2010) Using calibration weighting to adjust for nonignorable unit nonresponse. J Am Stat Assoc 105(491):1265–1275. MathSciNetCrossRefzbMATHGoogle Scholar
  52. Le Guennec J, Sautory O (2002) CALMAR2: une nouvelle version de la macro CALMAR de redressement d’échantillon par calage. Actes des Journées de Méthodologie. Insee, Paris, Paris, pp 33–38Google Scholar
  53. Lemel Y (1976) Une généralisation de la méthode du quotient pour le redressement des enquêtes par sondages. Annales de l’Insee 22–23:273–281Google Scholar
  54. Lesage É, Haziza D, D’Haultfoeuille X (2018) A cautionary tale on instrumental calibration for the treatment of nonignorable unit nonresponse in surveys. J Am Stat Assoc 114:1–28MathSciNetzbMATHGoogle Scholar
  55. Lumley T (2010) Survey: analysis of complex survey samples. R package version 3.23-0, The Comprehensive R Archive NetworkGoogle Scholar
  56. Lundström S, Särndal CE (1999) Calibration as a standard method for treatment of nonresponse. J Off Stat 15:305–327Google Scholar
  57. Madre JL (1980) Méthodes d’ajustement d’un tableau à des marges. Les Cahiers de l’Analyse des Données 5:87–99Google Scholar
  58. Matei A, Tillé Y (2007) Computational aspects of order \(\pi ps\) sampling schemes. Comput Stat Data Anal 51:3703–3717MathSciNetzbMATHGoogle Scholar
  59. Matei A, Tillé Y (2016) The R sampling package, Version 2.8. Université de Neuchâtel, NeuchâtelGoogle Scholar
  60. Narain RD (1951) On sampling without replacement with varying probabilities. J Indian Soc Agric Stat 3:169–174MathSciNetGoogle Scholar
  61. Nascimento Silva PLD, Skinner CJ (1997) Variable selection for regression estimation in finite populations. Surv Methodol 23(1):23–32Google Scholar
  62. Nieuwenbroek NJ, Boonstra HJ (2002) Bascula 4. 0 for weighting sample survey data with estimation of variances. Surv Statistician Softw Rev 46:6–11Google Scholar
  63. Owen AB (1988) Empirical likelihood ratio confidence intervals for a single functional. Biometrika 75(2):237–249MathSciNetzbMATHGoogle Scholar
  64. Park M, Yang M (2008) Ridge regression estimation for survey samples. Commun Stat Theory Methods 37(4):532–543MathSciNetzbMATHGoogle Scholar
  65. Rebecq A (2017) icarus: Calibrates and Reweights Units in Samples, likelihood, estimation. R package version 0.3.0. The Comprehensive R Archive NetworkGoogle Scholar
  66. Roy G, Vanheuverzwyn A (2001) Redressement par la macro CALMAR : applications et pistes d’amélioration. Traitements des fichiers d’enquêtes, éditions PUG pp 31–46Google Scholar
  67. Särndal CE (1980) On \(\pi \)-inverse weighting versus best linear unbiased weighting in probability sampling. Biometrika 67:639–650MathSciNetzbMATHGoogle Scholar
  68. Särndal CE (2007) The calibration approach in survey theory and practice. Surv Methodol 33:99–119Google Scholar
  69. Särndal CE, Lundström S (2005) Estimation in surveys with nonresponse. Wiley, New YorkzbMATHGoogle Scholar
  70. Särndal CE, Swensson B, Wretman JH (1992) Model assisted survey sampling. Springer, New YorkzbMATHGoogle Scholar
  71. Sautory O (1993) La macro calmar, redressement d’échantillon par calage sur marges. Tech. rep., Séries des documents de travail de la Direction des Statistiques Démographiques et Sociales, F9310, Insee, ParisGoogle Scholar
  72. Sautory O, Le Guennec J (2003) La macro CALMAR2: redressement d’un échantillon par calage sur marges - documentation de l’utilisateur. Technical report, Insee, ParisGoogle Scholar
  73. Shah BV (1981) SESUDAAN, standard errors program for computing of standardized rates from sample survey data. Research Triangle Institute, Research Triangle ParkGoogle Scholar
  74. Shah BV, Holt MM, Folsom RE (1977) Inference about regression models from sample survey data. Bull Int Stat Inst 47(3):43–57Google Scholar
  75. Shah BV, Folsom RE, Harrell F, Dillard C (1984) Survey data analysis software for logistic regression. Research Triangle Institute, Research Triangle ParkGoogle Scholar
  76. Shah BV, Folsom RE, LaVange LM, Wheeless SC, Boyle KE, Williams RL (1993) Statistical methods and mathematical algorithms used in SUDAAN. Research Triangle Institute, Research Triangle ParkGoogle Scholar
  77. Shah BV, Barnwell BG, Bieler GS et al (1997) SUDAAN user’s manual, release 7.5., vol 67. Research Triangle Institute, Research Triangle ParkGoogle Scholar
  78. Stephan FF (1942) An iterative method of adjusting sample frequency data tables when expected marginal totals are known. Ann Math Stat 13:166–178zbMATHGoogle Scholar
  79. Thionet P (1959) L’ajustement des résultats des sondages sur ceux des dénombrements. Revue de l’Institut International de Statistique 27:8–25MathSciNetzbMATHGoogle Scholar
  80. Thionet P (1976) Construction et reconstruction de tableaux statistiques. Annales de l’Insee 22–23:5–27MathSciNetGoogle Scholar
  81. Tillé Y, Matei A (2016) sampling: Survey Sampling., R package version 2.8
  82. Vanderhoeft C (2001) Generalised calibration at Statistics Belgium SPSS module gCALIBS and current practices. Technical report, statistics Belgium working paper no. 3Google Scholar
  83. Vanderhoeft C, Waeytens E, Museux JM (2001) Generalised calibration with SPSS 9. 0 for Windows baser. In: Droesbeke JJ, Lebart L (eds) Enquêtes. Modèles et Applications. Dunod, Paris, pp 404–415Google Scholar
  84. Wu C, Rao JNK (2006) Pseudo-empirical likelihood ratio confidence intervals for complex surveys. Can J Stat/La revue canadienne de statistique 34(3):359–376MathSciNetzbMATHGoogle Scholar
  85. Wu C, Sitter RR (2001) A model-calibration approach to using complete auxiliary information from survey data. J Am Stat Assoc 96:185–193MathSciNetzbMATHGoogle Scholar
  86. Yule GU (1912) On the methods of measuring association between two attributes. J Roy Stat Soc 75(6):579–652Google Scholar

Copyright information

© Sociedad de Estadística e Investigación Operativa 2019

Authors and Affiliations

  1. 1.Institut de statistiqueUniversité de NeuchâtelNeuchâtelSwitzerland

Personalised recommendations