pp 1–25 | Cite as

Goodness-of-fit test for a parametric survival function with cure fraction

  • Candida Geerdens
  • Paul Janssen
  • Ingrid Van KeilegomEmail author
Original Paper


We consider the survival function for univariate right-censored event time data, when a cure fraction is present. This means that the population consists of two parts: the cured or non-susceptible group, who will never experience the event of interest versus the non-cured or susceptible group, who will undergo the event of interest when followed up sufficiently long. When modeling the data, a parametric form is often imposed on the survival function of the susceptible group. In this paper, we construct a simple novel test to verify the aptness of the assumed parametric form. To this end, we contrast the parametric fit with the nonparametric fit based on a rescaled Kaplan–Meier estimator. The asymptotic distribution of the two estimators and of the test statistic are established. The latter depends on unknown parameters, hence a bootstrap procedure is applied to approximate the critical values of the test. An extensive simulation study reveals the good finite sample performance of the developed test. To illustrate the practical use, the test is also applied on two real-life data sets.


Bootstrap Cramér-von Mises Cure fraction Kaplan–Meier Parametric models Weak convergence 

Mathematics Subject Classification

62N01 62N02 62N03 



This work was supported by the European Research Council [2016-2021, Horizon 2020/ERC Grant No. 694409], by the Interuniversity Attraction Poles Program [IAP-network P7/06] of the Belgian Science Policy Office, and the Research Foundation Flanders (FWO), Scientific Research Community on ‘Asymptotic Theory for Multidimensional Statistics’ [W000817N]. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation Flanders (FWO) and the Flemish Government—department EWI.

Supplementary material

11749_2019_680_MOESM1_ESM.pdf (499 kb)
Supplementary material 1 (pdf 499 KB)


  1. Amico M, Van Keilegom I (2018) Cure models in survival analysis. Annu Rev Stat Appl 5:311–342MathSciNetCrossRefGoogle Scholar
  2. Chen X, Linton O, Van Keilegom I (2003) Estimation of semiparametric models when the criterion function is not smooth. Econometrica 71:1591–1608MathSciNetCrossRefGoogle Scholar
  3. Hollander M, Peña E (1992) A chi-squared goodness-of-fit test for randomly censored data. J Am Stat Assoc 87:458–463MathSciNetCrossRefGoogle Scholar
  4. Hosmer D, Lemeshow S, May S (2008) Applied survival analysis. Regression modeling of time-to-event data. Wiley, LondonCrossRefGoogle Scholar
  5. Kaplan E, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc 53:457–481MathSciNetCrossRefGoogle Scholar
  6. Kim N (2017) Goodness-of-fit tests for randomly censored Weibull distributions with estimated parameters. Commun Stat Appl Methods 24:519–531Google Scholar
  7. Klein J, Moeschberger M (1997) Survival analysis, techniques for censored and truncated data. Springer, BerlinzbMATHGoogle Scholar
  8. Koziol J (1980) Goodness-of-fit tests for randomly censored data. Biometrika 67:693–696MathSciNetCrossRefGoogle Scholar
  9. Koziol J, Green S (1976) A Cramér-von Mises statistic for randomly censored data. Biometrika 63:465–474MathSciNetzbMATHGoogle Scholar
  10. Lo SH, Singh K (1986) The product-limit estimator and the bootstrap: some asymptotic representations. Probab Theory Relat Fields 71:455–465MathSciNetCrossRefGoogle Scholar
  11. Maller R, Zhou S (1992) Estimating the proportion of immunes in a censored sample. Biometrika 79:731–739MathSciNetCrossRefGoogle Scholar
  12. Maller R, Zhou S (1996) Survival analysis with long term survivors. Wiley, LondonzbMATHGoogle Scholar
  13. Pardo-Fernández J, Van Keilegom I, González-Manteiga W (2007) Goodness-of-fit tests for parametric models in censored regression. Can J Stat 35:249–264MathSciNetCrossRefGoogle Scholar
  14. Peng Y, Taylor JMG (2014) Cure models. In: Klein J, van Houwelingen H, Ibrahim JG, Scheike TH (eds) Handbook of survival analysis, handbooks of modern statistical methods series, vol 6. Chapman & Hall, Boca Raton, pp 113–134Google Scholar
  15. Pettitt A, Stephens M (1976) Modified Cramér-von Mises statistics for censored data. Biometrika 63:291–298MathSciNetzbMATHGoogle Scholar
  16. Rao C (1965) Linear statistical inference and its applications. Wiley, LondonzbMATHGoogle Scholar
  17. Sánchez-Sellero C, González-Manteiga W, Van Keilegom I (2005) Uniform representation of product-limit integrals with applications. Scand J Stat 32:563–581MathSciNetCrossRefGoogle Scholar
  18. Serfling R (1980) Approximation theorems of mathematical statistics. Wiley, LondonCrossRefGoogle Scholar
  19. Van der Vaart A, Wellner J (1996) Weak convergence and empirical processes. Springer, BerlinCrossRefGoogle Scholar

Copyright information

© Sociedad de Estadística e Investigación Operativa 2019

Authors and Affiliations

  1. 1.CenstatUniversiteit HasseltDiepenbeekBelgium
  2. 2.OrstatKU LeuvenLeuvenBelgium

Personalised recommendations