General Thoracic and Cardiovascular Surgery

, Volume 67, Issue 1, pp 1–11 | Cite as

Thoracic aortic aneurysm: unlocking the “silent killer” secrets

  • Ayman A. Saeyeldin
  • Camilo A. Velasquez
  • Syed Usman B. Mahmood
  • Adam J. Brownstein
  • Mohammad A. Zafar
  • Bulat A. Ziganshin
  • John A. Elefteriades
SPECIAL EDITION Controversies in Surgery for Thoracic Aorta


Thoracic aortic aneurysm (TAA) is an increasingly recognized condition that is often diagnosed incidentally. This review discusses ten of the most relevant epidemiological and clinical secrets of this disease; (1) the difference in pathogenesis between ascending and descending TAAs. TAAs at these two sites act as different diseases, which is related to the different embryologic origins of the ascending and descending aorta. (2) The familial pattern and genetics of thoracic aneurysms. Syndromic TAAs only explain 5% of the pattern of inheritance. (3) The effect of female sex on TAA growth and outcome. Females have been found to have worse outcomes compared to males. (4) Guilt by Association. TAAs are associated with abdominal aortic aneurysms, intracranial aneurysms, bicuspid aortic valve, and inflammatory disorders. (5) Natural history of TAAs. Important findings have been made regarding the expansion rate (in relation to familial pattern, location and size), and also regarding the risk of rupture or dissection. (6) The aortic size paradox. Size only is not a sufficient predictor of risk of dissection. (7) Biomarker void. Although many serum biomarkers have been studied, imaging remains the only reliable method for diagnosis and follow-up. (8) Indications for repair. Decisions are made depending on symptoms, location, size, and familial patterns. (9) Types of repair. Both open and endovascular repair options are available for certain TAAs. (10) Medical treatment. The efficacy of prescribing beta blockers, angiotensin converting enzyme inhibitors or angiotensin receptor blockers remains dubious.


Thoracic aortic aneurysm Aortic dissection Biomarkers Natural history Medical management Genetics Indications for treatment 


Compliance with ethical standards

Conflict of interest

All authors declares that they have no conflict of interest.

Sources of funding



  1. 1.
    Elefteriades JA, Barrett PW, Kopf GS. Litigation in nontraumatic aortic diseases—a tempest in the malpractice maelstrom. Cardiology. 2008;109(4):263–72.Google Scholar
  2. 2.
    Olsson C, Thelin S, Ståhle E, Ekbom A, Granath F. Thoracic aortic aneurysm and dissection: Increasing prevalence and improved outcomes reported in a nationwide population-based study of more than 14,000 cases from 1987 to 2002. Circulation. 2006;114(24):2611–8.Google Scholar
  3. 3.
    Mészáros I, Mórocz J, Szlávi J, Schmidt J, Tornóci L, Nagy L, et al. Epidemiology and clinicopathology of aortic dissection. Chest. 2000;117(5):1271–8.Google Scholar
  4. 4.
    National Center for Injury Prevention and Control. WISQARS leading causes of death reports, 1999–2007. 2015. Accessed 28 June 2017.
  5. 5.
    Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics-2015 update: a report from the American Heart Association. Circulation. 2015;131:29–39.Google Scholar
  6. 6.
    Elefteriades JA, Farkas EA. Thoracic aortic aneurysm. Clinically pertinent controversies and uncertainties. J Am Coll Cardiol. 2010;55(9):841–57.Google Scholar
  7. 7.
    Jackson V, Olsson T, Kurtovic S, Folkersen L, Paloschi V, Wagsater D, et al. Matrix metalloproteinase 14 and 19 expression is associated with thoracic aortic aneurysms. J Thorac Cardiovasc Surg. 2012;144(2):459–66.Google Scholar
  8. 8.
    Huusko T, Salonurmi T, Taskinen P, Liinamaa J, Juvonen T, Paakko P, et al. Elevated messenger RNA expression and plasma protein levels of osteopontin and matrix metalloproteinase types 2 and 9 in patients with ascending aortic aneurysms. J Thorac Cardiovasc Surg. 2013;145(4):1117–23.Google Scholar
  9. 9.
    Serra R, Grande R, Montemurro R, Butrico L, Calio FG, Mastrangelo D, et al. The role of matrix metalloproteinases and neutrophil gelatinase-associated lipocalin in central and peripheral arterial aneurysms. Surgery. 2015;157(1):155–62.Google Scholar
  10. 10.
    Cheung C, Bernardo AS, Trotter MW, Pedersen RA, Sinha S. Generation of human vascular smooth muscle subtypes provides insight into embryological origin-dependent disease susceptibility. Nat Biotechnol 2012;30(2):165–73.Google Scholar
  11. 11.
    Tadros TM, Klein MD, Shapira OM. Ascending aortic dilatation associated with bicuspid aortic valve. Pathophysiology, molecular biology, and clinical implications. Circulation. 2009;119(6):880–90.Google Scholar
  12. 12.
    Kim HW, Stansfield BK. Genetic and epigenetic regulation of aortic aneurysms. Biomed Res Int. 2017;2017:1–12.Google Scholar
  13. 13.
    de Beaufort HWL, Nauta FJH, Conti M, Cellitti E, Trentin C, Faggiano E, et al. Extensibility and distensibility of the thoracic aorta in patients with aneurysm. Eur J Vasc Endovasc Surg. 2016;53(2):199–205.Google Scholar
  14. 14.
    Albornoz G, Coady MA, Roberts M, Davies RR, Tranquilli M, Rizzo JA, et al. Familial thoracic aortic aneurysms and dissections-incidence, modes of inheritance, and phenotypic patterns. Ann Thorac Surg. 2006;82(4):1400–5.Google Scholar
  15. 15.
    Biddinger A, Rocklin M, Coselli J, Milewicz DM. Familial thoracic aortic dilatations and dissections: a case control study. J Vasc Surg. 1997;25(3):506–11.Google Scholar
  16. 16.
    Robertson EN, Van Der Linde D, Sherrah AG, Vallely MP, Wilson M, Bannon PG, et al. Familial non-syndromal thoracic aortic aneurysms and dissections—incidence and family screening outcomes. Int J Cardiol. 2016;220:43–51.Google Scholar
  17. 17.
    Coady MA, Davies RR, Roberts M, Goldstein LJ, Rogalski MJ, Rizzo JA, et al. Familial patterns of thoracic aortic aneurysms. Arch Surg (Chicago Ill 1960). 1999;134(4):361–7.Google Scholar
  18. 18.
    Milewicz DM, Regalado ES. Heritable thoracic aortic disease overview. 2003 Feb 13 [Updated 2016 Dec 29]. In: Pagon RA, Adam MP, Ardinger HH et al, editors. Gene reviews® [internet]. Seattle: University of Washington; 1993–2017.Google Scholar
  19. 19.
    Isselbacher EM, Cardenas CLL, Lindsay ME. Hereditary influence in thoracic aortic aneurysm and dissection. Circulation. 2016;133(24):2516–28.Google Scholar
  20. 20.
    Bertoli-Avella AM, Gillis E, Morisaki H, Verhagen JMA, De Graaf BM, Van De Beek G, et al. Mutations in a TGF-β ligand, TGFB3, cause syndromic aortic aneurysms and dissections. J Am Coll Cardiol. 2015;65(13):1324–36.Google Scholar
  21. 21.
    Zhang L, Wang HH. The genetics and pathogenesis of thoracic aortic aneurysm disorder and dissections. Clin Genet. 2016;89(6):639–46.Google Scholar
  22. 22.
    Loeys BL, Schwarze U, Holm T, Callewaert BL, Thomas GH, Pannu H, et al. Aneurysm syndromes caused by mutations in the TGF-beta receptor. N Engl J Med. 2006;355(8):788–98.Google Scholar
  23. 23.
    Brownstein AJ, Ziganshin BA, Kuivaniemi H, Simon C, Bale AE, Elefteriades JA. Genes associated with thoracic aortic aneurysm and dissection: an update and clinical implications. AORTA (Stamford). 2017;5(1):11–20.Google Scholar
  24. 24.
    Davies RR, Gallo A, Coady MA, Tellides G, Botta DM, Burke B, et al. Novel measurement of relative aortic size predicts rupture of thoracic aortic aneurysms. Ann Thorac Surg. 2006;81(1):169–77.Google Scholar
  25. 25.
    Sandhu HK, Tanaka A, Charlton-Ouw KM, Afifi RO, Miller CC, Safi HJ, et al. Outcomes and management of type A intramural hematoma. Ann Cardiothorac Surg. 2016;5:317–27.Google Scholar
  26. 26.
    Cheung K, Boodhwani M, Beauchesne L, Chan KL, Dick A, Coutinho T. Sex differences in the growth rates of thoracic aneuryms: role of aneurysm etiology. Can J Cardiol. 2016;32(4):S1–11.Google Scholar
  27. 27.
    Cheung K, Boodhwani M, Chan K, Beauchesne L, Dick A, Coutinho T. Thoracic aortic aneurysm growth: role of sex and aneurysm etiology. J Am Heart Assoc. 2017;6(2):e003792.Google Scholar
  28. 28.
    Liang NL, Genovese EA, Al-Khoury GE, Hager ES, Makaroun MS, Singh MJ. Effects of gender differences on short-term outcomes in patients with type B aortic dissection. Ann Vasc Surg. 2017;38:78–83.Google Scholar
  29. 29.
    Deery SE, Shean KE, Wang GJ, Black JH, 3rd, Upchurch GR, Jr., Giles KA, et al. Female sex independently predicts mortality after thoracic endovascular aortic repair for intact descending thoracic aortic aneurysms. J Vasc Surg. 2017;66(1):2–8.Google Scholar
  30. 30.
    Elefteriades JA, Sang A, Kuzmik G, Hornick M. Guilt by association: paradigm for detecting a silent killer (thoracic aortic aneurysm). Open Hear. 2015;2(1):e000169.Google Scholar
  31. 31.
    Agricola E, Slavich M, Tufaro V, Fisicaro A, Oppizzi M, Melissano G, et al. Prevalence of thoracic ascending aortic aneurysm in adult patients with known abdominal aortic aneurysm: an echocardiographic study. Int J Cardiol. 2013;168(3):3147–8.Google Scholar
  32. 32.
    Kuzmik GA, Feldman M, Tranquilli M, Rizzo JA, Johnson M, Elefteriades JA. Concurrent intracranial and thoracic aortic aneurysms. Am J Cardiol. 2010;105(3):417–20.Google Scholar
  33. 33.
    Ziganshin BA, Theodoropoulos P, Salloum MN, Zaza KJ, Tranquilli M, Mojibian HR, et al. Simple renal cysts as markers of thoracic aortic disease. J Am Heart Assoc. 2016;5(1):1–11.Google Scholar
  34. 34.
    Pacini D, Leone O, Turci S, Camurri N, Giunchi F, Martinelli GN, et al. Incidence, etiology, histologic findings, and course of thoracic inflammatory aortopathies. Ann Thorac Surg. 2008;86(5):1518–23.Google Scholar
  35. 35.
    Beroukhim RS, Kruzick TL, Taylor AL, Gao D, Yetman AT. Progression of aortic dilation in children with a functionally normal bicuspid aortic valve. Am J Cardiol. 2006;98(6):828–30.Google Scholar
  36. 36.
    Avadhani SA, Martin-Doyle W, Shaikh AY, Pape LA. Predictors of ascending aortic dilation in bicuspid aortic valve disease: a five-year prospective study. Am J Med. 2015;128(6):647–52.Google Scholar
  37. 37.
    Huntington K, Hunter AGW, Chan KL. A prospective study to assess the frequency of familial clustering of congenital bicuspid aortic valve. J Am Coll Cardiol. 1997;30(7):1809–12.Google Scholar
  38. 38.
    Cripe L, Andelfinger G, Martin LJ, Shooner K, Benson DW. Bicuspid aortic valve is heritable. J Am Coll Cardiol. 2004;44(1):138–43.Google Scholar
  39. 39.
    Michelena HI, Khanna AD, Mahoney D, Margaryan E, Topilsky Y, Suri RM, et al. Incidence of aortic complications in patients with bicuspid aortic valves. Jama. 2011;306(10):1104–12.Google Scholar
  40. 40.
    Girdauskas E, Rouman M, Disha K, Espinoza A, Dubslaff G, Fey B, et al. Aortopathy in patients with bicuspid aortic valve stenosis: role of aortic root functional parameters. Eur J Cardio Thorac Surg. 2016;49(2):635–44.Google Scholar
  41. 41.
    Hornick M, Moomiaie R, Mojibian H, Ziganshin B, Almuwaqqat Z, Lee ES, et al. “Bovine” aortic arch—a marker for thoracic aortic disease. Cardiology. 2012;123(2):116–24.Google Scholar
  42. 42.
    Coady MA, Rizzo JA, Hammond GL, Mandapati D, Darr U, Kopf GS, et al. What is the appropriate size criterion for resection of thoracic aortic aneurysms? J Thorac Cardiovasc Surg. 1997;113(3):476–91.Google Scholar
  43. 43.
    Elefteriades JA. Natural history of thoracic aortic aneurysms: indications for surgery, and surgical versus nonsurgical risks. Ann Thorac Surg. 2002;74(5):S1877-80 (discussion S92-8).Google Scholar
  44. 44.
    Cambria RA, Gloviczki P, Stanson AW, Cherry KJ, Bower TC, Hallett JW, et al. Outcome and expansion rate of 57 thoracoabdominal aortic aneurysms managed nonoperatively. Am J Surg. 1995;170(2):213–7.Google Scholar
  45. 45.
    Verma S, Siu SC. Aortic dilatation in patients with bicuspid aortic valve. N Engl J Med. 2014;370(20):1920–9.Google Scholar
  46. 46.
    Davies RR, Kaple RK, Mandapati D, Gallo A, Botta DM, Elefteriades JA, et al. Natural history of ascending aortic aneurysms in the setting of an unreplaced bicuspid aortic valve. Ann Thorac Surg. 2007;83(4):1338–44.Google Scholar
  47. 47.
    Bonser RS, Pagano D, Lewis ME, Rooney SJ, Guest P, Davies P, et al. Clinical and patho-anatomical factors affecting expansion of thoracic aortic aneurysms. Heart. 2000;84(3):277–83.Google Scholar
  48. 48.
    Dapunt OE, Galla JD, Sadeghi AM, Lansman SL, Mezrow CK, de Asla RA, et al. The natural history of thoracic aortic aneurysms. J Thorac Cardiovasc Surg. 1994;107(5):1323.Google Scholar
  49. 49.
    Yiu RS, Cheng SWK. Natural history and risk factors for rupture of thoracic aortic arch aneurysms. J Vasc Surg. 2016;63(5):1189–94.Google Scholar
  50. 50.
    Davies RR, Goldstein LJ, Coady MA, Tittle SL, Rizzo JA, Kopf GS, et al. Yearly rupture or dissection rates for thoracic aortic aneurysms: simple prediction based on size. Ann Thorac Surg. 2002;73(1):17–28.Google Scholar
  51. 51.
    Kim JB, Kim K, Lindsay ME, MacGillivray T, Isselbacher EM, Cambria RP, et al. Risk of rupture or dissection in descending thoracic aortic aneurysm. Circulation. 2015;132(17):1620–9.Google Scholar
  52. 52.
    Koullias G, Modak R, Tranquilli M, Korkolis DP, Barash P, Elefteriades JA. Mechanical deterioration underlies malignant behavior of aneurysmal human ascending aorta. J Thorac Cardiovasc Surg. 2005;130(3):677–83.Google Scholar
  53. 53.
    Pape LA, Tsai TT, Isselbacher EM, Oh JK, O’Gara PT, Evangelista A, et al. Aortic diameter ≥ 5.5 cm is not a good predictor of type A aortic dissection: observations from the international registry of acute aortic dissection (IRAD). Circulation. 2007;116(10):1120–7.Google Scholar
  54. 54.
    Paruchuri V, Salhab KF, Kuzmik G, Gubernikoff G, Fang H, Rizzo JA, et al. Aortic size distribution in the general population: explaining the size paradox in aortic dissection. Cardiology. 2015;131(4):265–72.Google Scholar
  55. 55.
    Elefteriades JA, Ziganshin BA. Gratitude to the international registry of acute aortic dissection from the aortic community. J Am Coll Cardiol. 2015;66(4):359–62.Google Scholar
  56. 56.
    van Bogerijen GHW, Tolenaar JL, Grassi V, Lomazzi C, Segreti S, Rampoldi V, et al. Biomarkers in TAA-the holy grail. Prog Cardiovasc Dis. 2013;56(1):109–15.Google Scholar
  57. 57.
    Yuan S-M, Shi Y-H, Wang J-J, Fang-Qi L, Song G. Elevated plasma d-dimer and hypersensitive C-reactive protein levels may indicate aortic disorders. Rev Bras Cir Cardiovasc. 2011;26(4):573–81.Google Scholar
  58. 58.
    Knox JB, Sukhova GK, Whittemore AD, Libby P. Evidence for altered balance between matrix metalloproteinases and their inhibitors in human aortic diseases. Circulation. 1997;95(1):205–12.Google Scholar
  59. 59.
    Trimarchi S, Sangiorgi G, Sang X, Rampoldi V, Suzuki T, Eagle KA, et al. In search of blood tests for thoracic aortic diseases. Ann Thorac Surg. 2010;90(5):1735–42.Google Scholar
  60. 60.
    Golestani R, Sadeghi MM. Emergence of molecular imaging of aortic aneurysm: implications for risk stratification and management. J Nucl Cardiol. 2014;21(2):251–67.Google Scholar
  61. 61.
    Sakalihasan N, Van Damme H, Gomez P, Rigo P, Lapiere CM, Nusgens B, et al. Positron emission tomography (PET) evaluation of abdominal aortic aneurysm (AAA). Eur J Vasc Endovasc Surg. 2002;23(5):431–6.Google Scholar
  62. 62.
    Hiratzka LF, Bakris GL, Beckman JA, Bersin RM, Carr VF, Casey DE, et al. 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI /SIR/STS/SVM guidelines for the diagnosis and management of patients with thoracic aortic disease. J Am Coll Cardiol. 2010;55(14):e27–e129.Google Scholar
  63. 63.
    Erbel R, Aboyans V, Boileau C, Bossone E, Di Bartolomeo R, Eggebrecht H, et al. 2014 ESC guidelines on the diagnosis and treatment of aortic diseases. Eur Heart J. 2014;35(41):2873–926.Google Scholar
  64. 64.
    Boodhwani M, Andelfinger G, Leipsic J, Lindsay T, McMurtry MS, Therrien J, et al. Canadian cardiovascular society position statement on the management of thoracic aortic disease. Can J Cardiol. 2014;30(6):577–89.Google Scholar
  65. 65.
    Hiratzka LF, Creager MA, Isselbacher EM, Svensson LG, Nishimura RA, Bonow RO, et al. Surgery for aortic dilatation in patients with bicuspid aortic valves: a statement of clarification from the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2016;133(7):680–6.Google Scholar
  66. 66.
    Svensson LG, Adams DH, Bonow RO, Kouchoukos NT, Miller DC, O’Gara PT, et al. Aortic valve and ascending aorta guidelines for management and quality measures. Ann Thorac Surg. 2013;95(6):S1–66.Google Scholar
  67. 67.
    Kälsch H, Lehmann N, Möhlenkamp S, Becker A, Moebus S, Schmermund A, et al. Body-surface adjusted aortic reference diameters for improved identification of patients with thoracic aortic aneurysms: results from the population-based Heinz Nixdorf Recall study. Int J Cardiol. 2013;163(1):72–8.Google Scholar
  68. 68.
    Svensson LG, Khitin L. Aortic cross-sectional area/height ratio timing of aortic surgery in asymptomatic patients with Marfan syndrome. J Thorac Cardiovasc Surg. 2002;123(2):360–1.Google Scholar
  69. 69.
    Jondeau G, Ropers J, Regalado E, Braverman A, Evangelista A, Teixedo G, et al. International registry of patients carrying TGFBR1 or TGFBR2 mutations: results of the MAC (Montalcino aortic consortium). Circ Cardiovasc Genet. 2016;9(6):548–58.Google Scholar
  70. 70.
    Svensson LG, Kim KH, Lytle BW, Cosgrove DM. Relationship of aortic cross-sectional area to height ratio and the risk of aortic dissection in patients with bicuspid aortic valves. J Thorac Cardiovasc Surg. 2003;126(3):892–3.Google Scholar
  71. 71.
    Bonow RO, Carabello BA, Chatterjee K, de Leon Jr. AC, Faxon DP, Freed MD, et al. 2008 focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to. Circulation. 2008;118(15):e523–e661.Google Scholar
  72. 72.
    Ma W-G, Chou AS, Mok SCM, Ziganshin BA, Charilaou P, Zafar MA, et al. Positive family history of aortic dissection dramatically increases dissection risk in family members. Int J Cardiol. 2017;240(Supplement C):132–7.Google Scholar
  73. 73.
    Bakey MED. Successful resection of aneurysm of distal aortic arch and replacement by graft. J Am Med Assoc. 1954;155(16):1398.Google Scholar
  74. 74.
    Achneck HE, Rizzo JA, Tranquilli M, Elefteriades JA. Safety of thoracic aortic surgery in the present era. Ann Thorac Surg 2007;84(4):1180–5 (discussion 1185).Google Scholar
  75. 75.
    Crawford ES, Hess KR, Cohen ES, Coselli JS, Safi HJ. Ruptured aneurysm of the descending thoracic and thoracoabdominal aorta. Analysis according to size and treatment. Ann Surg. 1991;213:417–26.Google Scholar
  76. 76.
    Coselli JS, Lemaire SA, Preventza O, De La Cruz KI, Cooley DA, Price MD, et al. Outcomes of 3309 thoracoabdominal aortic aneurysm repairs. J Thorac Cardiovasc Surg. 2016;151(5):1323–38.Google Scholar
  77. 77.
    Fazel SS, David TE. Aortic valve-sparing operations for aortic root and ascending aortic aneurysms. Curr Opin Cardiol. 2007;22(6):497–503.Google Scholar
  78. 78.
    Veldtman GR, Connolly HM, Orszulak TA, Dearani JA, Schaff HV. Fate of bicuspid aortic valves in patients undergoing aortic root repair or replacement for aortic root enlargement. Mayo Clin Proc. 2006;81(3):322–6.Google Scholar
  79. 79.
    Freeze SL, Landis BJ, Ware SM, Helm BM. Bicuspid aortic valve: a review with recommendations for genetic counseling. J Genet Couns. 2016;25(6):1171–8.Google Scholar
  80. 80.
    Friedman T, Mani A, Elefteriades JA. Bicuspid aortic valve: clinical approach and scientific review of a common clinical entity. Expert Rev Cardiovasc Ther. 2008;6(2):235–48.Google Scholar
  81. 81.
    Bavaria JE, Appoo JJ, Makaroun MS, Verter J, Yu Z-F, Mitchell RS. Endovascular stent grafting versus open surgical repair of descending thoracic aortic aneurysms in low-risk patients: a multicenter comparative trial. J Thorac Cardiovasc Surg. 2007;133(2):369–77.Google Scholar
  82. 82.
    Rosset E, Ben Ahmed S, Galvaing G, Favre JP, Sessa C, Lermusiaux P, et al. hybrid treatment of thoracic, thoracoabdominal, and abdominal aortic aneurysms: a multicenter retrospective study. Eur J Vasc Endovasc Surg. 2014;47(5):470–8.Google Scholar
  83. 83.
    Grabenwoger M, Alfonso F, Bachet J, Bonser R, Czerny M, Eggebrecht H, et al. Thoracic endovascular aortic repair (TEVAR) for the treatment of aortic diseases: a position statement from the European Association for Cardio-Thoracic Surgery (EACTS) and the European Society of Cardiology (ESC), in collaboration with the European Assoc. Eur J Cardiothorac Surg. 2012;42(1):17–24.Google Scholar
  84. 84.
    Jovin IS, Duggal M, Ebisu K, Paek H, Oprea AD, Tranquilli M, et al. Comparison of the effect on long-term outcomes in patients with thoracic aortic aneurysms of taking versus not taking a statin drug. Am J Cardiol. 2012;109(7):1050–4.Google Scholar
  85. 85.
    Rylski B, Szeto WY, Bavaria JE, Branchetti E, Moser W, Milewski RK. Development of a single endovascular device for aortic valve replacement and ascending aortic repair. J Card Surg. 2014;29(3):371–6.Google Scholar
  86. 86.
    Liao SL, Elmariah S, van der Zee S, Sealove BA, Fuster V. Does medical therapy for thoracic aortic aneurysms really work? Are beta-blockers truly indicated? CON. Cardiol Clin. 2010;28(2):261–9.Google Scholar
  87. 87.
    Elefteriades JA. Does medical therapy for thoracic aortic aneurysms really work? Are β-blockers truly indicated? PRO. Cardiol Clin. 2010;28(2):255–60.Google Scholar
  88. 88.
    Danyi P, Elefteriades JA, Jovin IS. Medical therapy of thoracic aortic aneurysms: are we there yet? Circulation. 2011;124(13):1469–76.Google Scholar
  89. 89.
    Young RC. Progression of aortic dilatation and the benefit of long-term β-adrenergic blockade in Marfan’s Syndrome. 1981.Google Scholar
  90. 90.
    Ladouceur M, Fermanian C, Lupoglazoff JM, Edouard T, Dulac Y, Acar P, et al. Effect of beta-blockade on ascending aortic dilatation in children with the Marfan syndrome. Am J Cardiol. 2007;99(3):406–9.Google Scholar
  91. 91.
    Pyeritz RE, Loeys B. The 8th international research symposium on the Marfan syndrome and related conditions. Am J Med Genet Part A. 2012;158A(1):42–9.Google Scholar
  92. 92.
    Elefteriades JA, Ziganshin BA, Mukherjee SK. Atenolol versus losartan in Marfan’s syndrome. N Engl J Med. 2015;372(10):975–7.Google Scholar
  93. 93.
    Van Thiel BS, Van Der Pluijm I, Te Riet L, Essers J, Danser AHJ. The renin-angiotensin system and its involvement in vascular disease. Eur J Pharmacol. 2015;763:3–14.Google Scholar
  94. 94.
    Lindsay ME, Dietz HC. Lessons on the pathogenesis of aneurysm from heritable conditions. Nature. 2011;473(7347):308–16.Google Scholar
  95. 95.
    Moltzer E, Essers J, Van Esch JHM, Roos-Hesselink JW, Danser AHJ. The role of the renin-angiotensin system in thoracic aortic aneurysms: clinical implications. Pharmacol Ther. 2011;131(1):50–60.Google Scholar
  96. 96.
    Yetman AT, Bornemeier RA, McCrindle BW. Usefulness of enalapril versus propranolol or atenolol for prevention of aortic dilation in patients with the Marfan syndrome. Am J Cardiol. 2005;95(9):1125–7.Google Scholar
  97. 97.
    Habashi JP, Judge DP, Holm TM, Cohn RD, Loeys BL, Cooper TK, et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science. 2006;312(5770):117–21.Google Scholar
  98. 98.
    Brooke BS, Habashi JP, Judge DP, Patel N, Loeys B, Dietz HC. Angiotensin II blockade and aortic-root dilation in Marfan’s syndrome. N Engl J Med. 2008;358(26):2787–95.Google Scholar
  99. 99.
    Wang C, Qian X, Sun X, Chang Q. Angiotensin II increases matrix metalloproteinase 2 expression in human aortic smooth muscle cells via AT1R and ERK1/2. Exp Biol Med. 2015;240(12):1564–71.Google Scholar
  100. 100.
    Lacro RV, Dietz HC, Sleeper LA, Yetman AT, Bradley TJ, Colan SD, et al. Atenolol versus losartan in children and young adults with Marfan’s syndrome. N Engl J Med. 2014;371(22):2061–71.Google Scholar
  101. 101.
    Kurosawa K, Matsumura JS, Yamanouchi D. Current status of medical treatment for abdominal aortic aneurysm. Circ J. 2013;77(12):2860–6.Google Scholar
  102. 102.
    Stein LH, Berger J, Tranquilli M, Elefteraides JA. Effect of statin drugs on thoracic aortic aneurysms. Am J Cardiol. 2013;112(8):1240–5.Google Scholar
  103. 103.
    Elefteriades J. Thoracic aortic aneurysm: reading the enemy’ s playbook. Yale J Biol Med. 2008;81:175–86.Google Scholar
  104. 104.
    Ziganshin BA, Elefteriades JA. Yale milestones in reading the playbook of thoracic aortic aneurysms. Conn Med. 2012;76(10):589–98.Google Scholar

Copyright information

© The Japanese Association for Thoracic Surgery 2017

Authors and Affiliations

  • Ayman A. Saeyeldin
    • 1
  • Camilo A. Velasquez
    • 1
  • Syed Usman B. Mahmood
    • 1
  • Adam J. Brownstein
    • 1
  • Mohammad A. Zafar
    • 1
  • Bulat A. Ziganshin
    • 1
    • 2
  • John A. Elefteriades
    • 1
  1. 1.Aortic Institute at Yale-New HavenYale University School of MedicineNew HavenUSA
  2. 2.Department of Surgical Diseases # 2Kazan State Medical UniversityKazanRussia

Personalised recommendations