Advertisement

General Thoracic and Cardiovascular Surgery

, Volume 67, Issue 1, pp 93–101 | Cite as

Bicuspid aortic valve related aortopathy

  • Sina Stock
  • Salah A. Mohamed
  • Hans-Hinrich SieversEmail author
SPECIAL EDITION Controversies in Surgery for Thoracic Aorta
  • 458 Downloads

Abstract

Bicuspid aortic valve related aortopathy is known to significantly increase the risk for catastrophic aortic events and, therefore, represents a considerable health burden. Albeit of ongoing research in this field including genetic, molecular, hemodynamic and morphologic aspects, bicuspid aortic valve related aortopathy still represents an imperfectly understood disorder. This lack in knowledge results in a lack of consistency considering different therapeutic approaches. Recent studies have provided new insights into the etiology and clinical impacts of bicuspid aortic valve related aortopathy in different clinical settings, leading to a growing body of opinion towards a more individualized surgical approach than currently provided by the guidelines. Especially valvular hemodynamics—stenosis and regurgitation—seem to have significant impact on the development of bicuspid aortic valve related aortopathy. In this context, there is evidence that regurgitation of bicuspid aortic valves is the more fatal pathomechanism. Furthermore, “age” represents an aspect that should be taken into account when deciding whether to replace the aorta or not, because the diameter depends mainly on a patients age. The same diameter of the aorta in a 70-year old and a 20-year old patient has to be interpreted differently and should, therefore, result in different therapeutic strategies.

Keywords

Bicuspid aortic valve related aortopathy Individualized approach 

Notes

Compliance with ethical standards

Conflict of interest

Hans-Hinrich Sievers receive royalties from B. Braun Melsungen (Germany) for Sinus prosthesis.

References

  1. 1.
    Ward C. Clinical significance of the bicuspid aortic valve. Heart (BMJ Group). 2000;83:81–5.Google Scholar
  2. 2.
    Sievers H-H, Sievers HL. Aortopathy in bicuspid aortic valve disease—genes or hemodynamics? or Scylla and Charybdis? Eur J Cardiothorac Surg. 2011;39:803–4.CrossRefGoogle Scholar
  3. 3.
    Fedak PWM, Verma S, David TE, Leask RL, Weisel RD, Butany J. Clinical and pathophysiological implications of a bicuspid aortic valve. Circulation. 2002;106:900–4.CrossRefGoogle Scholar
  4. 4.
    Michelena HI, Khanna AD, Mahoney D, Margaryan E, Topilsky Y, Suri RM, et al. Incidence of aortic complications in patients with bicuspid aortic valves. JAMA. 2011;306:1104–12.CrossRefGoogle Scholar
  5. 5.
    Fazel SS, Mallidi HR, Lee RS, Sheehan MP, Liang D, Fleischman D, et al. The aortopathy of bicuspid aortic valve disease has distinctive patterns and usually involves the transverse aortic arch. J Thorac Cardiovasc Surg. 2008;135:901–7 (907.e1–2).CrossRefGoogle Scholar
  6. 6.
    Corte Della A, Bancone C, Quarto C, Dialetto G, Covino FE, Scardone M, et al. Predictors of ascending aortic dilatation with bicuspid aortic valve: a wide spectrum of disease expression. Eur J Cardiothorac Surg. 2007;31:397–404 (discussion 404–5).CrossRefGoogle Scholar
  7. 7.
    Schaefer BM, Lewin MB, Stout KK, Gill E, Prueitt A, Byers PH, et al. The bicuspid aortic valve: an integrated phenotypic classification of leaflet morphology and aortic root shape. Heart (BMJ Publishing Group Ltd). 2008;94:1634–8.Google Scholar
  8. 8.
    Cotrufo M, Corte Della A. The association of bicuspid aortic valve disease with asymmetric dilatation of the tubular ascending aorta: identification of a definite syndrome. J Cardiovasc Med (Hagerstown). 2009;10:291–7.CrossRefGoogle Scholar
  9. 9.
    Sievers H-H, Stierle U, Hachmann RMS, Charitos EI. New insights in the association between bicuspid aortic valve phenotype, aortic configuration and valve haemodynamics. Eur J Cardiothorac Surg. 2016;49:439–46.CrossRefGoogle Scholar
  10. 10.
    Sievers H-H, Schmidtke C. A classification system for the bicuspid aortic valve from 304 surgical specimens. J Thorac Cardiovasc Surg (Elsevier). 2007;133:1226–33.CrossRefGoogle Scholar
  11. 11.
    Cripe L, Andelfinger G, Martin LJ, Shooner K, Benson DW. Bicuspid aortic valve is heritable. J Am Coll Cardiol. 2004;44:138–43.CrossRefGoogle Scholar
  12. 12.
    Huntington K, Hunter AG, Chan KL. A prospective study to assess the frequency of familial clustering of congenital bicuspid aortic valve. J Am Coll Cardiol. 1997;30:1809–12.CrossRefGoogle Scholar
  13. 13.
    Garg V, Muth AN, Ransom JF, Schluterman MK, Barnes R, King IN, et al. Mutations in NOTCH1 cause aortic valve disease. Nature. 2005;437:270–4.CrossRefGoogle Scholar
  14. 14.
    Mohamed SA, Aherrahrou Z, Liptau H, Erasmi AW, Hagemann C, Wrobel S, et al. Novel missense mutations (p. T596M and p.P1797H) in NOTCH1 in patients with bicuspid aortic valve. Biochem Biophys Res Commun. 2006;345:1460–5.CrossRefGoogle Scholar
  15. 15.
    McKellar SH, Tester DJ, Yagubyan M, Majumdar R, Ackerman MJ, Sundt TM. Novel NOTCH1 mutations in patients with bicuspid aortic valve disease and thoracic aortic aneurysms. J Thorac Cardiovasc Surg (Elsevier). 2007;134:290–6.CrossRefGoogle Scholar
  16. 16.
    Milewicz DM, Guo D-C, Tran-Fadulu V, Lafont AL, Papke CL, Inamoto S, et al. Genetic basis of thoracic aortic aneurysms and dissections: focus on smooth muscle cell contractile dysfunction. Annu Rev Genom Hum Genet. 2008;9:283–302.CrossRefGoogle Scholar
  17. 17.
    Guo D, Hasham S, Kuang SQ, Vaughan CJ, Boerwinkle E, Chen H, et al. Familial thoracic aortic aneurysms and dissections: genetic heterogeneity with a major locus mapping to 5q13-14. Circulation. 2001;103:2461–8.CrossRefGoogle Scholar
  18. 18.
    Grewal N, Gittenberger-de Groot AC, Poelmann RE, Klautz RJ, Lindeman JH, Goumans MJ, Palmen M, Mohamed SA, Sievers HH, Bogers AJ, DeRuiter MC, et al. Ascending aorta dilation in association with bicuspid aortic valve: a maturation defect of the aortic wall. J Thorac Cardiovasc Surg (Elsevier Inc). 2014;148:1583–90.CrossRefGoogle Scholar
  19. 19.
    Branchetti E, Bavaria JE, Grau JB, Shaw RE, Poggio P, Lai EK, et al. Circulating soluble receptor for advanced glycation end product identifies patients with bicuspid aortic valve and associated aortopathies. Arterioscler Thromb Vasc Biol (American Heart Association, Inc). 2014;34:2349–57.CrossRefGoogle Scholar
  20. 20.
    Navarrete Santos A, Yan J, Lochmann P, Pfeil H, Petersen M, Simm A, et al. Collagen analysis of the ascending aortic dilatation associated with bicuspid aortic valve disease compared with tricuspid aortic valve. Arch Physiol Biochem. 2016;122:289–94.CrossRefGoogle Scholar
  21. 21.
    Charitos EI, Stierle U, Hachmann R, Sievers HH. Is there an association between bicuspid aortic valve phenotype, aortic configuration and transvalvular hemodynamics? Thorac Cardiovasc Surg. 2015;63:OP103.Google Scholar
  22. 22.
    Girdauskas E, Rouman M, Disha K, Fey B, Dubslaff G, von Kodolitsch Y, et al. Morphologic and functional markers of aortopathy in patients with bicuspid aortic valve insufficiency versus stenosis. Ann Thorac Surg (Elsevier). 2017;103:49–57.CrossRefGoogle Scholar
  23. 23.
    Girdauskas E, Rouman M, Disha K, Dubslaff G, Fey B, Theis B, et al. Aortopathy in bicuspid aortic valve stenosis with fusion of right-left versus right-non-coronary cusps: are these different diseases? J Heart Valve Dis. 2016;25:262–9.Google Scholar
  24. 24.
    Girdauskas E, Rouman M, Disha K, Espinoza A, Dubslaff G, Fey B, et al. Aortopathy in patients with bicuspid aortic valve stenosis: role of aortic root functional parameters. Eur J Cardiothorac Surg. 2016;49:635–43 (discussion 643–4).CrossRefGoogle Scholar
  25. 25.
    Girdauskas E, Disha K, Secknus M, Borger M, Kuntze T. Increased risk of late aortic events after isolated aortic valve replacement in patients with bicuspid aortic valve insufficiency versus stenosis. J Cardiovasc Surg (Torino). 2013;54:653–9.Google Scholar
  26. 26.
    Wang Y, Wu B, Li J, Dong L, Wang C, Shu X. Impact of aortic insufficiency on ascending aortic dilatation and adverse aortic events after isolated aortic valve replacement in patients with a bicuspid aortic valve. Ann Thorac Surg (Elsevier). 2016;101:1707–14.CrossRefGoogle Scholar
  27. 27.
    Girdauskas E, Rouman M, Disha K, Espinoza A, Misfeld M, Borger MA, et al. Aortic dissection after previous aortic valve replacement for bicuspid aortic valve disease. J Am Coll Cardiol. 2015;66:1409–11.CrossRefGoogle Scholar
  28. 28.
    Michelena HI, Corte Della A, Prakash SK, Milewicz DM, Evangelista A, Enriquez-Sarano M. Bicuspid aortic valve aortopathy in adults: incidence, etiology, and clinical significance. Int J Cardiol (Elsevier Ireland Ltd). 2015;201:400–7.CrossRefGoogle Scholar
  29. 29.
    Mahadevia R, Barker AJ, Schnell S, Entezari P, Kansal P, Fedak PWM, et al. Bicuspid aortic cusp fusion morphology alters aortic three-dimensional outflow patterns, wall shear stress, and expression of aortopathy. Circulation (American Heart Association, Inc). 2014;129:673–82.Google Scholar
  30. 30.
    Barker AJ, Markl M, Bürk J, Lorenz R, Bock J, Bauer S, et al. Bicuspid aortic valve is associated with altered wall shear stress in the ascending aorta. Circ Cardiovasc Imaging (American Heart Association, Inc). 2012;5:457–66.CrossRefGoogle Scholar
  31. 31.
    Barker AJ, Lanning C, Shandas R. Quantification of hemodynamic wall shear stress in patients with bicuspid aortic valve using phase-contrast MRI. Ann Biomed Eng. 2010;38:788–800.CrossRefGoogle Scholar
  32. 32.
    Lorenz R, Bock J, Barker AJ, von Knobelsdorff-Brenkenhoff F, Wallis W, Korvink JG, et al. 4D flow magnetic resonance imaging in bicuspid aortic valve disease demonstrates altered distribution of aortic blood flow helicity. Magn Reson Med. 2014;71:1542–53.CrossRefGoogle Scholar
  33. 33.
    Bissell MM, Hess AT, Biasiolli L, Glaze SJ, Loudon M, Pitcher A, et al. Aortic dilation in bicuspid aortic valve disease: flow pattern is a major contributor and differs with valve fusion type. Circ Cardiovasc Imaging (American Heart Association, Inc). 2013;6:499–507.CrossRefGoogle Scholar
  34. 34.
    Guzzardi DG, Barker AJ, van Ooij P, Malaisrie SC, Puthumana JJ, Belke DD, et al. Valve-related hemodynamics mediate human bicuspid aortopathy: insights from wall shear stress mapping. J Am Coll Cardiol. 2015;66:892–900.CrossRefGoogle Scholar
  35. 35.
    den Reijer PM, Sallee D, van der Velden P, Zaaijer ER, Parks WJ, Ramamurthy S, et al. Hemodynamic predictors of aortic dilatation in bicuspid aortic valve by velocity-encoded cardiovascular magnetic resonance. J Cardiovasc Magn Reson (BioMed Central). 2010;12:4.CrossRefGoogle Scholar
  36. 36.
    Hope MD, Hope TA, Crook SES, Ordovas KG, Urbania TH, Alley MT, et al. 4D flow CMR in assessment of valve-related ascending aortic disease. JACC Cardiovasc Imaging. 2011;4:781–7.CrossRefGoogle Scholar
  37. 37.
    Hope MD, Hope TA, Meadows AK, Ordovas KG, Urbania TH, Alley MT, et al. Bicuspid aortic valve: four-dimensional MR evaluation of ascending aortic systolic flow patterns. Radiology (Radiological Society of North America, Inc). 2010;255:53–61.Google Scholar
  38. 38.
    Hope MD, Sigovan M, Wrenn SJ, Saloner D, Dyverfeldt P. MRI hemodynamic markers of progressive bicuspid aortic valve-related aortic disease. J Magn Reson Imaging. 2014;40:140–5.CrossRefGoogle Scholar
  39. 39.
    De Backer J. Marfan and Sartans: time to wake up! Eur Heart J. 2015;36:2131–3.CrossRefGoogle Scholar
  40. 40.
    Atkins SK, Cao K, Rajamannan NM, Sucosky P. Bicuspid aortic valve hemodynamics induces abnormal medial remodeling in the convexity of porcine ascending aortas. Biomech Model Mechanobiol (Springer Berlin Heidelberg). 2014;13:1209–25.CrossRefGoogle Scholar
  41. 41.
    Bock J, Frydrychowicz A, Lorenz R, Hirtler D, Barker AJ, Johnson KM, et al. In vivo noninvasive 4D pressure difference mapping in the human aorta: phantom comparison and application in healthy volunteers and patients. Magn Reson Med. 2011;66:1079–88.CrossRefGoogle Scholar
  42. 42.
    Stalder AF, Russe MF, Frydrychowicz A, Bock J, Hennig J, Markl M. Quantitative 2D and 3D phase contrast MRI: optimized analysis of blood flow and vessel wall parameters. Magn Reson Med (Wiley Subscription Services, Inc., A Wiley Company). 2008;60:1218–31 (Wiley Subscription Services, Inc., A Wiley Company).Google Scholar
  43. 43.
    Harloff A, Nussbaumer A, Bauer S, Stalder AF, Frydrychowicz A, Weiller C, et al. In vivo assessment of wall shear stress in the atherosclerotic aorta using flow-sensitive 4D MRI. Magn Reson Med. 2010;63:1529–36 (Wiley Subscription Services, Inc., A Wiley Company).CrossRefGoogle Scholar
  44. 44.
    Kang J-W, Song HG, Yang DH, Baek S, Kim D-H, Song J-M, et al. Association between bicuspid aortic valve phenotype and patterns of valvular dysfunction and bicuspid aortopathy: comprehensive evaluation using MDCT and echocardiography. JACC Cardiovasc Imaging. 2013;6:150–61.CrossRefGoogle Scholar
  45. 45.
    Girdauskas E, Rouman M, Disha K, Scholle T, Fey B, Theis B, et al. Correlation between systolic transvalvular flow and proximal aortic wall changes in bicuspid aortic valve stenosis. Eur J Cardiothorac Surg. 2014;46:234–9 (discussion 239).CrossRefGoogle Scholar
  46. 46.
    Roberts WC, Vowels TJ, Ko JM, Filardo G, Hebeler RF, Henry AC, et al. Comparison of the structure of the aortic valve and ascending aorta in adults having aortic valve replacement for aortic stenosis versus for pure aortic regurgitation and resection of the ascending aorta for aneurysm. Circulation. 2011;123:896–903.CrossRefGoogle Scholar
  47. 47.
    Girdauskas E, Rouman M, Borger MA, Kuntze T. Comparison of aortic media changes in patients with bicuspid aortic valve stenosis versus bicuspid valve insufficiency and proximal aortic aneurysm. Interact Cardiovasc Thorac Surg. 2013;17:931–6.CrossRefGoogle Scholar
  48. 48.
    Girdauskas E, Rouman M, Disha K, Fey B, Dubslaff G, Theis B, et al. Functional aortic root parameters and expression of aortopathy in bicuspid versus tricuspid aortic valve stenosis. J Am Coll Cardiol. 2016;67:1786–96.CrossRefGoogle Scholar
  49. 49.
    Girdauskas E, Disha K, Borger MA, Kuntze T. Long-term prognosis of ascending aortic aneurysm after aortic valve replacement for bicuspid versus tricuspid aortic valve stenosis. J Thorac Cardiovasc Surg (Elsevier). 2014;147:276–82.CrossRefGoogle Scholar
  50. 50.
    Girdauskas E, Rouman M, Disha K, Dubslaff G, Fey B, Misfeld M, et al. The fate of mild-to-moderate proximal aortic dilatation after isolated aortic valve replacement for bicuspid aortic valve stenosis: a magnetic resonance imaging follow-up study. Eur J Cardiothorac Surg. 2016;49:e80–6 (discussione 86–7).CrossRefGoogle Scholar
  51. 51.
    Verma S, Yanagawa B, Kalra S, Ruel M, Peterson MD, Yamashita MH, et al. Knowledge, attitudes, and practice patterns in surgical management of bicuspid aortopathy: a survey of 100 cardiac surgeons. J Thorac Cardiovasc Surg (Elsevier). 2013;146:1033–4.CrossRefGoogle Scholar
  52. 52.
    Erbel R, Aboyans V, Boileau C, Bossone E, Bartolomeo RD, Eggebrecht H, et al. ESC Guidelines on the diagnosis and treatment of aortic diseases: document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The Task Force for the Diagnosis and Treatment of Aortic Diseases of the European Society of Cardiology (ESC). Eur Heart J. 2014;2014:2873–926.Google Scholar
  53. 53.
    2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM Guidelines for the Diagnosis and Management of Patients with Thoracic Aortic Disease Representative Members, Hiratzka LF, Creager MA, Isselbacher EM, Svensson LG, 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease Representative Members, et al. Surgery for aortic dilatation in patients with bicuspid aortic valves: A statement of clarification from the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Thorac Cardiovasc Surg (Elsevier); 2016. 151:959–66.Google Scholar
  54. 54.
    Hardikar AA, Marwick TH. The natural history of guidelines: the case of aortopathy related to bicuspid aortic valves. Int J Cardiol (Elsevier). 2015;199:150–3.CrossRefGoogle Scholar
  55. 55.
    Biaggi P, Matthews F, Braun J, Rousson V, Kaufmann PA, Jenni R. Gender, age, and body surface area are the major determinants of ascending aorta dimensions in subjects with apparently normal echocardiograms. J Am Soc Echocardiogr (Elsevier). 2009;22:720–5.CrossRefGoogle Scholar
  56. 56.
    Schlatmann TJM, Becker AE. Histologic changes in the normal aging aorta: implications for dissecting aortic aneurysm. Am J Cardiol (Elsevier). 1977;39:13–20.CrossRefGoogle Scholar
  57. 57.
    Fernandes S, Khairy P, Graham DA, Colan SD, Galvin TC, Sanders SP, et al. Bicuspid aortic valve and associated aortic dilation in the young. Heart (BMJ Publishing Group Ltd and British Cardiovascular Society); 2012;98:1014–9.Google Scholar
  58. 58.
    Verma S, Siu SC. Aortic dilatation in patients with bicuspid aortic valve. N Engl J Med. 2014;370:1920–9.CrossRefGoogle Scholar
  59. 59.
    Abdulkareem N, Smelt J, Jahangiri M. Bicuspid aortic valve aortopathy: genetics, pathophysiology and medical therapy. Interact Cardiovasc Thorac Surg. 2013;17:554–9.CrossRefGoogle Scholar
  60. 60.
    Sievers H-H, Charitos EI. Ascending aorta diameters: normal, abnormal, or pathologic? Ann Thorac Surg (Elsevier). 2016;101:2430–1.CrossRefGoogle Scholar
  61. 61.
    Charitos E, Sievers HH. A z-score based approach for the replacement of the ascending aorta: insights from 943 patients. Thorac Cardiovasc Surg. 2016;64:OP203.CrossRefGoogle Scholar
  62. 62.
    Pape LA, Tsai TT, Isselbacher EM, Oh JK, O’Gara PT, Evangelista A, et al. Aortic diameter ≥5.5 cm is not a good predictor of type A aortic dissection: observations from the international registry of acute aortic dissection (IRAD). Circulation (American Heart Association, Inc). 2007;116:1120–7.Google Scholar
  63. 63.
    Rylski B, Blanke P, Beyersdorf F, Desai ND, Milewski RK, Siepe M, et al. How does the ascending aorta geometry change when it dissects? J Am Coll Cardiol. 2014;63:1311–9.CrossRefGoogle Scholar
  64. 64.
    Elefteriades JA. Weight lifting and rupture of silent aortic aneurysms. JAMA. 2003;290:2803.CrossRefGoogle Scholar
  65. 65.
    Hatzaras I, Tranquilli M, Coady M, Barrett PM, Bible J, Elefteriades JA. Weight lifting and aortic dissection: more evidence for a connection. Cardiology (Karger Publishers). 2007;107:103–6.CrossRefGoogle Scholar
  66. 66.
    Elefteriades JA. Beating a Sudden Killer. Sci Am. 2005;293:64–71.CrossRefGoogle Scholar
  67. 67.
    Elefteriades JA, Farkas EA. Thoracic aortic aneurysm. J Am Coll Cardiol. 2010;55:841–57.CrossRefGoogle Scholar
  68. 68.
    Hatzaras IS, Bible JE, Koullias GJ, Tranquilli M, Singh M, Elefteriades JA. Role of exertion or emotion as inciting events for acute aortic dissection. Am J Cardiol (Elsevier). 2007;100:1470–2.CrossRefGoogle Scholar
  69. 69.
    Van Puyvelde J, Verbeken E, Verbrugghe P, Herijgers P, Meuris B. Aortic wall thickness in patients with ascending aortic aneurysm versus acute aortic dissection. Eur J Cardiothorac Surg. 2016;49:756–62.CrossRefGoogle Scholar
  70. 70.
    Forsell C, Björck HM, Eriksson P, Franco-Cereceda A, Gasser TC. Biomechanical properties of the thoracic aneurysmal wall: differences between bicuspid aortic valve and tricuspid aortic valve patients. Ann Thorac Surg (Elsevier). 2014;98:65–71.CrossRefGoogle Scholar
  71. 71.
    Heng E, Stone JR, Kim JB, Lee H, MacGillivray TE, Sundt TM. Comparative histology of aortic dilatation associated with bileaflet versus trileaflet aortic valves. Ann Thorac Surg (Elsevier). 2015;100:2095–101.CrossRefGoogle Scholar
  72. 72.
    Didangelos A, Yin X, Mandal K, Jahangiri M, Mayr M. BAS/BSCR9 Proteomic characterisation of extracellular space components in the human aorta. Heart (BMJ Publishing Group Ltd). 2010;96:e15.Google Scholar
  73. 73.
    Rabkin SW. Differential expression of MMP-2, MMP-9 and TIMP proteins in thoracic aortic aneurysm – comparison with and without bicuspid aortic valve: a meta-analysis. Vasa (Verlag Hans Huber). 2014;43:433–42.Google Scholar
  74. 74.
    Wu J, Song H-F, Li S-H, Guo J, Tsang K, Tumiati L, et al. Progressive aortic dilation is regulated by miR-17–associated miRNAs. J Am Coll Cardiol. 2016;67:2965–77.CrossRefGoogle Scholar
  75. 75.
    Corte Della A, Quarto C, Bancone C, Castaldo C, Di Meglio F, Nurzynska D, et al. Spatiotemporal patterns of smooth muscle cell changes in ascending aortic dilatation with bicuspid and tricuspid aortic valve stenosis: focus on cell-matrix signaling. J Thorac Cardiovasc Surg (Elsevier). 2008;135:8–18 (18.e1–2).CrossRefGoogle Scholar
  76. 76.
    Tsamis A, Phillippi JA, Koch RG, Chan PG, Krawiec JT, D’Amore A, et al. Extracellular matrix fiber microarchitecture is region-specific in bicuspid aortic valve-associated ascending aortopathy. J Thorac Cardiovasc Surg (Elsevier). 2016;151:1718–28.CrossRefGoogle Scholar
  77. 77.
    Shahmansouri N, Alreshidan M, Emmott A, Lachapelle K, Cartier R, Leask RL, et al. Evaluating ascending aortic aneurysm tissue toughness: dependence on collagen and elastin contents. J Mech Behav Biomed Mater. 2016;64:262–71.CrossRefGoogle Scholar
  78. 78.
    Jiao J, Xiong W, Wang L, Yang J, Qiu P, Hirai H, et al. Differentiation defect in neural crest-derived smooth muscle cells in patients with aortopathy associated with bicuspid aortic valves. EBioMedicine (Elsevier). 2016;10:282–90.CrossRefGoogle Scholar
  79. 79.
    Sievers HH (2009) Invited Commentary. ATS (The Society of Thoracic Surgeons); 2009;87:82.Google Scholar
  80. 80.
    Charitos EI, Hanke T, Karluss A, Hilker L, Stierle U, Sievers H-H. New insights into bicuspid aortic valve disease: the elongated anterior mitral leaflet. Eur J Cardiothorac Surg. 2013;43:367–70.CrossRefGoogle Scholar
  81. 81.
    Sievers H-H, Stierle U, Mohamed SA, Hanke T, Richardt D, Schmidtke C, et al. Toward individualized management of the ascending aorta in bicuspid aortic valve surgery: the role of valve phenotype in 1362 patients. J Thorac Cardiovasc Surg (Elsevier). 2014;148:2072–80.CrossRefGoogle Scholar
  82. 82.
    Fedak PWM, Verma S. The molecular fingerprint of bicuspid aortopathy. J Thorac Cardiovasc Surg (Elsevier). 2013;145:1334.CrossRefGoogle Scholar
  83. 83.
    Stephens EH, Hope TA, Kari FA, Kvitting JP, Liang DH, Herfkens RJ, Miller DC. Greater asymmetric wall shear stress in Sievers’ type 1/LR compared with 0/LAT bicuspid aortic valves after valve-sparing aortic root replacement. J Thorac Cardiovasc Surg. 2015;150(1):59–68.CrossRefGoogle Scholar

Copyright information

© The Japanese Association for Thoracic Surgery 2017

Authors and Affiliations

  • Sina Stock
    • 1
  • Salah A. Mohamed
    • 1
  • Hans-Hinrich Sievers
    • 1
    Email author
  1. 1.Department of Cardiac and Thoracic Vascular SurgeryUniversity of LuebeckLuebeckGermany

Personalised recommendations