Advertisement

Production Engineering

, Volume 13, Issue 5, pp 567–577 | Cite as

Life cycle oriented technology chain optimization: a methodology to identify the influences of tool manufacturing on environmental impacts caused in the tool’s use phase

  • Timm GrünebaumEmail author
  • Ulrich Müller
  • Jan Rey
  • Sebastian Barth
  • Thomas Bergs
Production Management
  • 63 Downloads

Abstract

Limited availability of resources, increasing global energy demand and legal regulations force tool manufacturers to offer ecologically efficient products. Tools cause environmental impacts in every phase of their life cycles—from resource extraction to disposal. Environmental impacts arising during the use phase are highly dependent on the tool characteristics created in the tool’s manufacturing phase. A holistic analysis of the parameters affecting the use phase as well as of the manufacturing technologies used to manufacture the tool is needed in order to minimize the environmental impacts of the use phase. A methodology that supports technology planners to modify technology chains in order to improve a tool’s ecological efficiency under consideration of the influences between lifecycle phases is therefore introduced. The tool is first analyzed to identify its relevant characteristics. Technological influences within the tool’s use phase are then analyzed. The influences of the manufacturing phase on tool characteristics are identified in a third stage. Fourthly, the tool’s environmental impacts caused by the tool characteristics and by the technological influences during the use phase are added. The methodology therefore enables the reduction of a tool’s environmental impacts in selected impact categories by adjusting identified levers in the tool’s manufacturing phase and in its use phase.

Keywords

Technology planning Technology chain optimization Life cycle assessment Gate to gate consideration Manufacturing phase Use phase 

Notes

Acknowledgements

The authors would like to thank the German Research Foundation DFG for funding the depicted research within the Project KL 500/158-1 “Produktlebenszyklursorientierte Bewertung von Fertigungsverfahren”.

References

  1. 1.
    Chryssolouris G, Papakostas N, Mavrikios D (2008) A perspective on manufacturing strategy: produce more with less. CIRP J Manuf Sci Technol 1(1):45–52.  https://doi.org/10.1016/j.cirpj.2008.06.008 CrossRefGoogle Scholar
  2. 2.
    European Commission (2014) Report on critical raw materials for the EU: report of the Ad hoc Working Group on defining critical raw materialsGoogle Scholar
  3. 3.
    Eyrisch T (2009) Optimierung der Herstellung von Vollhartmetallwerkzeugen: Strategie zur Vermeidung von Oberflächenschädigungen. Diss., TU KaiserslauternGoogle Scholar
  4. 4.
    Sant’Anna PR, Bouzon M, Tortorella GL, Campos LMS (2017) Implementation of Lean and Green practices: a supplier-oriented assessment method. Prod Eng Res Dev 11(4–5):531–543.  https://doi.org/10.1007/s11740-017-0749-0 CrossRefGoogle Scholar
  5. 5.
    International Organization for Standardization (2009) Environmental management—life cycle assessment—principles and framework 3.020.10 (ISO 14040)Google Scholar
  6. 6.
    Helu M, Vijayaraghavan A, Dornfeld D (2011) Evaluating the relationship between use phase environmental impacts and manufacturing process precision. CIRP Ann Manuf Technol 60(1):49–52.  https://doi.org/10.1016/j.cirp.2011.03.020 CrossRefGoogle Scholar
  7. 7.
    Kellens K, Dewulf W, Overcash M, Hauschild MZ, Duflou JR (2012) Methodology for systematic analysis and improvement of manufacturing unit process life-cycle inventory (UPLCI)—CO2PE!: initiative (cooperative effort on process emissions in manufacturing). Part 1: methodology description. Int J Life Cycle Assess 17(1):69–78.  https://doi.org/10.1007/s11367-011-0340-4 CrossRefGoogle Scholar
  8. 8.
    Milberg J, Müller S (2007) Integrated configuration and holistic evaluation of technology chains within process planning. Prod Eng Res Dev 1(4):401–406.  https://doi.org/10.1007/s11740-007-0055-3 CrossRefGoogle Scholar
  9. 9.
    Klocke F, Buchholz S, Stauder J (2014) Technology chain optimization: a systematic approach considering the manufacturing history. Prod Eng Res Dev 8(5):669–678.  https://doi.org/10.1007/s11740-014-0572-9 CrossRefGoogle Scholar
  10. 10.
    Stauder J, Buchholz S, Mattfeld P, Rey J (2016) Evaluating the substitution risk of production systems in volatile environments. Prod Eng Res Dev 10(3):305–318.  https://doi.org/10.1007/s11740-016-0670-y CrossRefGoogle Scholar
  11. 11.
    Intergovernmental Panel on Climate Change (2018) Global warming of 1.5 °C: an IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways in the context of strengthening the global response to the threat of climate change sustainable development and efforts to eradicate poverty. Intergovernmental Panel on Climate Change, Geneva, SwitzerlandGoogle Scholar
  12. 12.
    Heller J, Loewer M, Feldhusen J (2014) Enhanced function structure applicability through adaptive function templates. Athens J Technol Eng 1(1):33–46Google Scholar
  13. 13.
    Zhao GY, Liu ZY, He Y, Cao HJ, Guo YB (2017) Energy consumption in machining: classification, prediction, and reduction strategy. Energy 133:142–157.  https://doi.org/10.1016/j.energy.2017.05.110 CrossRefGoogle Scholar
  14. 14.
    Chiu MC, Chu CH (2012) Review of sustainable product design from life cycle perspectives. Int J Precis Eng Manuf 13(7):1259–1272.  https://doi.org/10.1007/s12541-012-0169-1 CrossRefGoogle Scholar
  15. 15.
    Bereketli İ, Genevois ME (2012) Environmental impact assessment in sustainable manufacturing: a case study. IFAC Proc Vol 45(6):746–751.  https://doi.org/10.3182/20120523-3-RO-2023.00194 CrossRefGoogle Scholar
  16. 16.
    Delogu M, Zanchi L, Dattilo CA, Ierides M (2018) Parameters affecting the sustainability trade-off between production and use stages in the automotive lightweight design. Proced CIRP 69:534–539.  https://doi.org/10.1016/j.procir.2017.12.063 CrossRefGoogle Scholar
  17. 17.
    Germani M, Mandolini M, Marconi M, Marilungo E (2014) A method for the estimation of the economic and ecological sustainability of production lines. Proced CIRP 15:147–152.  https://doi.org/10.1016/j.procir.2014.06.072 CrossRefGoogle Scholar
  18. 18.
    Stavropoulos P, Giannoulis C, Papacharalampopoulos A, Foteinopoulos P, Chryssolouris G (2016) Life cycle analysis: comparison between different methods and optimization challenges. Proced CIRP 41:626–631.  https://doi.org/10.1016/j.procir.2015.12.048 CrossRefGoogle Scholar
  19. 19.
    CIRP International Institution for Production Engineering Research (2004) Dictionary of production engineering, 2nd edn. Springer, Berlin, p 26Google Scholar
  20. 20.
    Klocke F (2011) Manufacturing processes 1: cutting. Springer, BerlinCrossRefGoogle Scholar
  21. 21.
    Klocke F, Mattfeld P, Stauder J, Müller J, Grünebaum T (2017) Robust technology chain design: considering undesired interactions within the technology chain. Prod Eng Res Dev 11(4–5):575–585.  https://doi.org/10.1007/s11740-017-0756-1 CrossRefGoogle Scholar
  22. 22.
    Klocke F, Brinksmeier E, Weinert K (2005) Capability profile of hard cutting and grinding processes. CIRP Ann 54(2):22–45.  https://doi.org/10.1016/S0007-8506(07)60018-3 CrossRefGoogle Scholar
  23. 23.
    Zetek M, Česáková I, Švarc V (2014) Increasing cutting tool life when machining Inconel 718. Proced Eng 69:1115–1124.  https://doi.org/10.1016/j.proeng.2014.03.099 CrossRefGoogle Scholar
  24. 24.
    Saglam H, Yaldiz S, Unsacar F (2007) The effect of tool geometry and cutting speed on main cutting force and tool tip temperature. Mater Des 28(1):101–111.  https://doi.org/10.1016/j.matdes.2005.05.015 CrossRefGoogle Scholar
  25. 25.
    Paucksch E, Holsten S, Linß M, Tikal F (2008) Zerspantechnik: Prozesse, Werkzeuge, Technologien, 12th edn. Vieweg Teubner, WiesbadenGoogle Scholar
  26. 26.
    Özel T, Hsu TK, Zeren E (2005) Effects of cutting edge geometry, workpiece hardness, feed rate and cutting speed on surface roughness and forces in finish turning of hardened AISI H13 steel. Int J Adv Manuf Technol 25(3–4):262–269.  https://doi.org/10.1007/s00170-003-1878-5 CrossRefGoogle Scholar
  27. 27.
    Klocke F (2018) Zerspanung mit geometrisch bestimmter Schneide, 9th edn. Springer, BerlinCrossRefGoogle Scholar
  28. 28.
    Wuest T, Klein D, Seifert M, Thoben KD (2012) Method to describe interdependencies of state characteristics related to distortion. Mater Werkstofftech 43(1–2):186–191.  https://doi.org/10.1002/mawe.201100908 CrossRefGoogle Scholar
  29. 29.
    Denkena B, Henjes J, Henning H (2011) Simulation-based dimensioning of manufacturing process chains. CIRP J Manuf Sci Technol 4(1):9–14.  https://doi.org/10.1016/j.cirpj.2011.06.015 CrossRefGoogle Scholar
  30. 30.
    Nowag L, Sölter J, Brinksmeier E (2007) Influence of turning parameters on distortion of bearing rings. Prod Eng Res Dev 1(2):135–139.  https://doi.org/10.1007/s11740-007-0009-9 CrossRefGoogle Scholar
  31. 31.
    Mang T, Bobzin K, Bartels T (eds) (2011) Industrial tribology: tribosystems, friction, wear and surface engineering, lubrication. Wiley-VCH, WeinheimGoogle Scholar
  32. 32.
    Huijbregts MAJ, Steinmann ZJN, elshout PMF, Stam G, Verones F, Vieira MDM, Hollander A, Zijp M, van Zelm R (2016) ReCiPe 2016: a harmonized life cycle impact assessment method at midpoint and endpoint level report I: characterization. National Institute for Public Health and the Environment. Bilthoven, NetherlandsGoogle Scholar
  33. 33.
    Maaßen U, Schiffer H-W (2018) The German lignite industry in 2017. World Min Surf Undergr 70(3):156–166Google Scholar
  34. 34.
  35. 35.
    Juhrich K (2016) CO2 emission factors for fossil fuels. German Environment Agency (UBA), Dessau, GermanyGoogle Scholar
  36. 36.
    DEW21 (2018) Erdgas Kennwerte 2018. Dortmund Energy and Water Supply. https://www.dew21.de/fileadmin/Dokumente/Produkte/Erdgas/Erdgaskennwerte.pdf. Accessed 20 May 2019
  37. 37.
    Heisel U, Klocke F, Uhlmann E, Spur G (2014) Handbuch Spanen, 2nd edn. Hanser, MunichGoogle Scholar
  38. 38.
    Degner W, Lutze H, Smejkal E (2015) Spanende Formung: Theorie, Berechnung, Richtwerte, 17th edn. Hanser, MunichCrossRefGoogle Scholar
  39. 39.
    Li W, Kara S (2011) An empirical model for predicting energy consumption of manufacturing processes: a case of turning process. Proc Inst Mech Eng Part B J Eng Manuf 225(9):1636–1646.  https://doi.org/10.1177/2041297511398541 CrossRefGoogle Scholar
  40. 40.
    Diaz N, Redelsheimer E, Dornfeld D (2011) Energy consumption characterization and reduction strategies for milling machine tool use. In: Hesselbach J, Herrmann C (eds) Glocalized solutions for sustainability in manufacturing: proceedings of the 18th CIRP international conference on life cycle engineering. Springer, Berlin, pp 263–267Google Scholar
  41. 41.
    Arsecularatne JA, Zhang LC, Montross C (2006) Wear and tool life of tungsten carbide, PCBN and PCD cutting tools. Int J Mach Tools Manuf 46(5):482–491.  https://doi.org/10.1016/j.ijmachtools.2005.07.015 CrossRefGoogle Scholar
  42. 42.
    Suh NP (1990) The principles of design. Oxford series on advanced manufacturing, vol 6. Oxford University Press, New YorkGoogle Scholar
  43. 43.
    Mourtzis D, Papakostas N, Mavrikios D, Makris S, Alexopoulos K (2015) The role of simulation in digital manufacturing: applications and outlook. Int J Comput Integr Manuf 28(1):3–24.  https://doi.org/10.1080/0951192X.2013.800234 CrossRefGoogle Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2019

Authors and Affiliations

  • Timm Grünebaum
    • 1
    Email author
  • Ulrich Müller
    • 1
  • Jan Rey
    • 1
  • Sebastian Barth
    • 1
  • Thomas Bergs
    • 1
  1. 1.Laboratory for Machine Tools and Production Engineering (WZL) of RWTH Aachen UniversityAachenGermany

Personalised recommendations