Advertisement

Improvement of sheet metal formability by local work-hardening with punch indentation

  • Yohei AbeEmail author
  • Ken-ichiro Mori
  • Tomoyoshi Maeno
  • Sho Ishihara
  • Yuki Kato
Production Process

Abstract

To improve the formability in stamping, a blank was locally work-hardened by indentation with a punch. Local strength expressed as a product of flow stress and thickness is increased up to a certain punch stroke by indentation, because the influence on the local strength contributed by the flow stress increase is larger than that by the thickness reduction. The effects of the indentation ratio, the number of punches and blank materials on the deformation behaviour in stamping were evaluated. The formability was increased by indenting thinning portions of the blank. The approach is effective for a sheet metal having a high work-hardening exponent such as stainless steel.

Keywords

Stamping Sheet metal Punch indentation Locally work-hardening 

Notes

References

  1. 1.
    Bruschi S, Altan T, Banabic D, Bariani PF, Brosiusd A, Cao J, Ghiottia A, Khraisheh M, Merklein M, Tekkaya AE (2014) Testing and modelling of material behaviour and formability in sheet metal forming. CIRP Ann Manuf Technol 63(2):727–749CrossRefGoogle Scholar
  2. 2.
    Firat M (2007) Computer aided analysis and design of sheet metal forming processes: part III: stamping die-face design. Mater Des 28(4):1311–1320CrossRefGoogle Scholar
  3. 3.
    Manabe K, Yang M, Yoshihara S (1998) Artificial intelligence identification of process parameters and adaptive control system for deep-drawing process. J Mater Process Technol 80–81:421–426CrossRefGoogle Scholar
  4. 4.
    Manabe K, Koyama H, Yoshihara S, Yagami T (2002) Development of a combination punch speed and blank-holder fuzzy control system for the deep-drawing process. J Mater Process Technol 125–126:440–445CrossRefGoogle Scholar
  5. 5.
    Sheng ZQ, Jirathearanat S, Altan T (2004) Adaptive FEM simulation for prediction of variable blank holder force in conical cup drawing. Int J Mach Tool Manuf 44(5):487–494CrossRefGoogle Scholar
  6. 6.
    Ohata T, Nakamura Y, Katayama T, Nakamachi E, Nakano K (1996) Development of optimum process design system by numerical simulation. J Mater Process Technol 60–1:4543–4548Google Scholar
  7. 7.
    Abe Y, Mori K, Ebihara O (2002) Optimisation of the distribution of wall thickness in the multistage sheet metal forming of wheel disks. J Mater Process Technol 125–126:792–797CrossRefGoogle Scholar
  8. 8.
    Chen W, Liu ZJ, Hou B, Dub RX (2007) Study on multi-stage sheet metal forming for automobile structure-pieces. J Mater Process Technol 187–188:113–117CrossRefGoogle Scholar
  9. 9.
    Merklein M, Johannes M, Lechner M, Kuppert A (2014) A review on tailored blanks—production, applications and evaluation. J Mater Process Technol 214(2):151–164CrossRefGoogle Scholar
  10. 10.
    Mori K, Bariani PF, Behrens BA, Brosiusd A, Bruschi S, Maeno T, Merklein M, Yanagimoto J (2017) Hot stamping of ultra-high strength steel parts. CIRP Ann Manuf Technol 66(2):755–777CrossRefGoogle Scholar
  11. 11.
    Kalpakjian S, Schmid SR (2014) Manufacturing engineering and technology, 7th edn. Pearson, London, pp 593–594Google Scholar
  12. 12.
    Cheng CH, Chan LC, Chow CL (2007) Weldment properties evaluation and formability study of tailor-welded blanks of different thickness combinations and welding orientations. J Mater Sci 42(14):5982–5990CrossRefGoogle Scholar
  13. 13.
    Mohebbi MS, Akbarzadeh A (2012) Prediction of formability of tailor welded blanks by modification of MK model. Int J Mater Sci 61(1):44–51Google Scholar
  14. 14.
    Bandyopadhyay K, Lee MG, Panda SK, Saha P, Lee J (2017) Formability assessment and failure prediction of laser welded dual phase steel blanks using anisotropic plastic properties. Int J Mater Sci 126:203–221Google Scholar
  15. 15.
    Tobias G, Merklein M (2016) Material flow control in tailor welded blanks by a combination of heat treatment and warm forming. CIRP Ann Manuf Technol 65(1):305–308CrossRefGoogle Scholar
  16. 16.
    Miles MP, Decker BJ, Nelson TW (2004) Formability and strength of friction-stir-welded aluminum sheets. Metall Mater Trans A 35(11):3461–3468CrossRefGoogle Scholar
  17. 17.
    Kim D, Lee W, Kim J, Kim C, Chung K (2010) Formability evaluation of friction stir welded 6111-T4 sheet with respect to joining material direction. Int J Mater Sci 52(4):612–625Google Scholar
  18. 18.
    Vollertsen F, Lange K (1998) Enhancement of drawability by local heat treatment. CIRP Ann Manuf Technol 47(1):181–184CrossRefGoogle Scholar
  19. 19.
    Geiger M, Merklein M, Kerausch M (2004) Finite element simulation of deep drawing of tailored heat treated blanks. CIRP Ann Manuf Technol 53(1):223–226CrossRefGoogle Scholar
  20. 20.
    Merklein M, Vogt U (2007) Enhanced formability of aluminum blanks by local laser heat treatment. In: Geiger M, Otto A, Schmidt M (eds.), Proceedings of the 5th international conference on laser assisted net shape engineering (LANE), Erlangen, Germany, pp 1279–1288Google Scholar
  21. 21.
    Geiger M, Merklein M, Vogt U (2009) Aluminum tailored heat treated blanks. Prod Eng Res Devel 3:401–410CrossRefGoogle Scholar
  22. 22.
    Neugebauer R, Scheffler S, Poprawe R, Weisheit A (2009) Local laser heat treatment of ultra high strength steels to improve formability. Prod Eng Res Devel 3:347–351CrossRefGoogle Scholar
  23. 23.
    Tekkaya AE, Allwood JM, Bariani PF, Bruschi S, Cao J, Gramlich S, Groche P, Hirt G, Ishikawa T, Löbbe C, Lueg-Althoff J, Merklein M, Misiolek WZ, Pietrzyk M, Shivpuri R, Yanagimoto J (2015) Metal forming beyond shaping: predicting and setting product properties. CIRP Ann Manuf Technol 64(2):629–653CrossRefGoogle Scholar
  24. 24.
    Grüber M, Kopp R, Hirt G (2015) Flexible rolling, 60 excellent inventions in metal forming. Springer, New York, pp 213–218Google Scholar
  25. 25.
    Kleiner M, Geiger M, Klaus A (2003) Manufacturing of lightweight components by metal forming. CIRP Ann Manuf Technol 52(2):521–542CrossRefGoogle Scholar
  26. 26.
    Engler O, Schäfer C, Brinkman HJ, Brecht J, Beiter P, Nijhof K (2016) Flexible rolling of aluminium alloy sheet-process optimization and control of materials properties. J Mater Process Technol 229:139–148CrossRefGoogle Scholar
  27. 27.
    Han S, Hwang T, Oh I, Choi M, Moon YH (2018) Manufacturing of tailor-rolled blanks with thickness variations in both the longitudinal and latitudinal directions. J Mater Process Technol 256:172–182CrossRefGoogle Scholar
  28. 28.
    Tajul L, Maeno T, Kinoshita T, Mori K (2017) Successive forging of tailored blank having thickness distribution for hot stamping. Int J Adv Manuf Technol 89(9–12):3731–3739CrossRefGoogle Scholar
  29. 29.
    Merklein M, Allwood JM, Behrens BA, Brosius A, Hagenah H, Kuzman K, Mori K, Tekkaya AE, Weckenmann A (2012) Bulk forming of sheet metal. CIRP Ann Manuf Technol 61(2):725–745CrossRefGoogle Scholar
  30. 30.
    Mori K, Nakano T (2016) State-of-the-art of plate forging in Japan. Prod Eng Res Dev 10–1:81–91CrossRefGoogle Scholar
  31. 31.
    Namoco CS Jr, Iizuka T, Sagrado RC, Takakura N, Yamaguchi K (2006) Experimental and numerical investigation of restoration behavior of sheet metals subjected to bulging deformation. J Mater Process Technol 177:368–372CrossRefGoogle Scholar
  32. 32.
    Tan CJ, Mori K, Abe Y (2008) Forming of tailor blanks having local thickening for control of wall thickness of stamped products. J Mater Process Technol 202(1–3):443–449CrossRefGoogle Scholar
  33. 33.
    Mori K, Abe Y, Osakada K, Hiramatsu S (2011) Plate forging of tailored blanks having local thickening for deep drawing of square cups. J Mater Process Technol 211(10):1569–1574CrossRefGoogle Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringToyohashi University of TechnologyToyohashiJapan
  2. 2.Division of Systems Research, Faculty of EngineeringYokohama National UniversityYokohamaJapan

Personalised recommendations