Advertisement

Investigation on cutting edge preparation and FEM assisted optimization of the cutting edge micro shape for machining of nickel-base alloy

  • M. Tiffe
  • R. AßmuthEmail author
  • J. Saelzer
  • D. Biermann
Production Process
  • 27 Downloads

Abstract

The productivity and the tool life of cutting tools are majorly influenced by the cutting edge micro shape. The identification of optimized cutting edges is usually based on empirical knowledge or is carried out in iterative investigation steps. This paper presents an approach to predict optimal cutting edge micro shapes with the aid of finite-element-simulations of the chip formation. The approach is investigated for the machining of the nickel-base alloy Inconel 718. The cutting edges are prepared by pressurized air wet abrasive jet machining. Utilizing this method, the prepared cutting edges have a certain profile, which is considered for the modelling. By applying a model for tool wear the influence of the cutting edge micro shape on the tool life span is estimated. Subsequently, a statistical modelling provides the prediction of the tool wear rate for any possible parameter set within the investigated range. This is used to find an optimized cutting edge profile that minimizes the tool wear. An experimental investigation concludes the optimization procedure.

Keywords

Wet abrasive jet machining Chip formation simulation Cutting edge preparation Tool wear Optimization Nickel-base alloy 

Notes

Acknowledgements

This paper is based on investigations of the projects “Development of a simulation based method for a load dependent optimization of cemented carbide tools for nickel-base alloys—Variable micro geometry along the cutting edge/Knowledge Transfer Project” (BI 498/75)—project number 313918187 and “Analysis of a simulation approach to model the material removal when preparing cutting edge with wet abrasive jet machining” (BI 498/89)—project number 374073886 which are kindly supported by the German Research Foundation (DFG).

References

  1. 1.
    Denkena B, Biermann D (2014) Cutting edge geometries. CIRP Ann Manuf Technol 63:631–653CrossRefGoogle Scholar
  2. 2.
    Bouzakis K-D, Michailidis N, Skordaris G, Bouzakis E, Biermann D, M’Saoubi R (2012) Cutting with coated tools: coating technologies, characterization methods and performance optimization. CIRP Ann Manuf Technol 61(2):703–723CrossRefGoogle Scholar
  3. 3.
    Denkena B, Friemuth T, Fedorenko S, Groppe M (2002) An der Schneide wird das Geld verdient—Neue Parameter zur Charakterisierung der Schneidengeometrien an Zerspanwerkzeugen. Werkzeuge—Sonderausgabe der Zeitschrift Fertigung 30(2):24–26Google Scholar
  4. 4.
    Yuseffian NZ, Koshy P (2013) Parametric characterization of the geometry of honed cutting edges. Precis Eng 37:746–752CrossRefGoogle Scholar
  5. 5.
    Uhlmann E, König J, Dethlefs A, Graf v. d. Schulenburg M (2011) Charakterisierung geometrisch bestimmter Schneiden. Wt Werkstattstechnikonline 101(7/8):475–481Google Scholar
  6. 6.
    Biermann D, Baschin A (2009) Influence of cutting edge geometry and cutting edge radius on the stability of micromilling processes. Prod Eng Res Dev 3(4–5):375–380CrossRefGoogle Scholar
  7. 7.
    Denkena B, Lucas A, Bassett E (2011) Effects of the cutting edge microgeometry on tool wear and its thermo mechanical load. CIRP Ann Manuf Technol 60(1):73–76CrossRefGoogle Scholar
  8. 8.
    Wyen C-F (2011) Rounded cutting edges and their influence in machining titanium. Dissertation, ETH Zürich, ZürichGoogle Scholar
  9. 9.
    Cheung FY, Zhou ZF, Geddam A, Li KY (2008) Cutting edge preparation using magnetic polishing and its influence on the performance of high-speed steel drills. J Mater Process Technol 208:196–204CrossRefGoogle Scholar
  10. 10.
    Bassett E, Köhler J, Denkena B (2012) On the honed cutting edge and its side effects during orthogonal turning operations of AISI1045 with coated WCCo inserts. CIRP J Manuf Sci Technol 5:108–126CrossRefGoogle Scholar
  11. 11.
    Bassett E (2014) Belastungsspezifische Auslegung und Herstellung von Schneidkanten für Drehwerkzeuge. Dissertation, Leibniz Universität HannoverGoogle Scholar
  12. 12.
    Bergmann B (2017) Grundlagen zur Auslegung von Schneidkantenverrundungen. Dissertation, Leibniz Universität HannoverGoogle Scholar
  13. 13.
    Cortes Rodriguez CJ (2009) Cutting edge preparation of precision cutting tools by applying micro-abrasive jet machining and brushing. Dissertation, Universität KasselGoogle Scholar
  14. 14.
    Terwey I (2011) Steigerung der Leistungsfähigkeit von Vollhartmetallwendelbohrern durch Strahlspanen. Technische Universität DortmundGoogle Scholar
  15. 15.
    Risse K (2006) Einflüsse von Werkzeugdurchmesser und Schneidkantenverrundung beim Bohren mit Wendelbohrern in Stahl. Dissertation RWTH AachenGoogle Scholar
  16. 16.
    Denkena B, Köhler J (2012) Mesfin Sisay Mengesha: influence of the cutting edge rounding on the chip formation process: Part 1. Investigation of material flow, process forces, and cutting temperature. Prod Eng 6(4–5):329–338CrossRefGoogle Scholar
  17. 17.
    Yen Y-C, Jain A, Altan T (2004) A finite element analysis of orthogonal machining using different tool edge geometries. J Mater Process Technol 146(1):72–81CrossRefGoogle Scholar
  18. 18.
    Usui E, Shirakashi T, Kitagawa T (1984) Analytical prediction of cutting tool wear. Wear 100:129–151CrossRefGoogle Scholar
  19. 19.
    Yen Y-C, Söhner J, Lilly B, Altan T (2004) Estimation of tool wear in orthogonal cutting using the finite element analysis. J Mater Process Technol 146(1):82–91CrossRefGoogle Scholar
  20. 20.
    Klocke F, Frank P (2009) Verschleißsimulation von cBN-Schneidplatten beim Hartdrehen. Wt Werkstattstechnikonline 99(1/2):35–41Google Scholar
  21. 21.
    Attanasio A, Ceretti E, Giardini C 3D FEM simulation of flank wear in turning. In: Proceedings of the 14th international Esaform conference on material forming, pp 561–566Google Scholar
  22. 22.
    Lotfi M, Jahanbakhsh M, Akhavan Farid A (2016) Wear estimation of ceramic and coated carbide tools in turning of Inconel 625: 3D FE analysis. Tribol Int 99:107–116CrossRefGoogle Scholar
  23. 23.
    Sacks J, Welch WJ, Mitchell TJ, Wynn HP (1989) Design and analysis of computer experiments. Stat Sci 4:409–435MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Klocke F, Lung D, Buchkremer S (2013) Inverse identification of the constitutive equation of inconel 718 and AISI 1045 from FE machining simulations. Proc CIRP 8:212–217CrossRefGoogle Scholar
  25. 25.
    Biermann D, Aßmuth R, Hess S, Tiffe M (2018) Simulation based analysis and optimisation of the cutting edge micro shape for machining of nickel-base alloys. Proc CIRP 67:284–289CrossRefGoogle Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2019

Authors and Affiliations

  1. 1.Institute of Machining TechnologyTU Dortmund UniversityDortmundGermany

Personalised recommendations