In-line monitoring of carbon nanoparticle epoxy dispersion processes

Insights into the process via next generation three roll mills and impedance spectroscopy
  • H. MeeuwEmail author
  • V. K. Wisniewski
  • U. Köpke
  • A. S. Nia
  • A. R. Vázquez
  • M. R. Lohe
  • X. Feng
  • B. Fiedler
Production Process


The new generation of three roll mills is able to monitor occurring process loads while dispersion. This paper focuses on the interpretation of the gathered data to find criteria quantifying the dispersion state online. The aim is process time reduction. We used impedance spectroscopy to identify the dispersion state and correlated it with the occurring process loads. The dispersion process of a wide spectrum of carbon based nano particles, namely carbon black, single walled carbon nanotubes, multi walled carbon nanotubes, a few-layer graphene powder, electrochemically exfoliated graphite and a functionalized electrochemically exfoliated graphite was investigated. The filler content was varied along the material’s electrical percolation threshold. The criteria found led to a reduction of processing time and revealed the prevalent mechanisms during dispersion.


Carbon nano particle Dispersion Three roll mill 



The authors thank the German Research Foundation (DFG, project “Multifunktionale Komposite—Gedruckte Elektronik zur strukturintegrierten Zustandsüberwachung von Faser—Kunststoff—Verbunden”—Project number: 393868053) for financial support of this project. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant agreement number 785219 and 768930). Moreover, the authors are grateful to OCSiAl for providing the SWCNT. Special thanks go to Hexion for providing the epoxy resins.

Compliance with ethical standards

Conflict of interest

The authors declares that they have no conflict of interest.


  1. 1.
    Fan Z, Advani SG (2007) Rheology of multiwall carbon nanotube suspensions. J Rheol 51(4):585–604. CrossRefGoogle Scholar
  2. 2.
    Rahatekar SS, Koziol KKK, Butler SA, Elliott JA, Shaffer MSP, Mackley MR, Windle AH (2006) Optical microstructure and viscosity enhancement for an epoxy resin matrix containing multiwall carbon nanotubes. J Rheol 50(5):599–610. CrossRefGoogle Scholar
  3. 3.
    Tibbetts G, Lake M, Strong K, Rice B (2007) A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Compos Sci Technol 67(7–8):1709–1718. CrossRefGoogle Scholar
  4. 4.
    Atchudan R, Pandurangan A, Joo J (2015) Effects of nanofillers on the thermo-mechanical properties and chemical resistivity of epoxy nanocomposites. J Nanosci Nanotechnol 15(6):4255–4267. CrossRefGoogle Scholar
  5. 5.
    Khalil HPSA, Noriman NZ, Ahmad MN, Ratnam MM, Fuaad NAN (2007) Polyester composites filled carbon black and activated carbon from Bamboo (Gigantochloa scortechinii): physical and mechanical properties. J Reinf Plast Compos 26(3):305–320. CrossRefGoogle Scholar
  6. 6.
    Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes-the route toward applications. Science (New York, N.Y.) 297(5582):787–792. CrossRefGoogle Scholar
  7. 7.
    Tang LC, Wan YJ, Yan D, Pei YB, Zhao L, Li YB, Wu LB, Jiang JX, Lai GQ (2013) The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon 60:16–27. CrossRefGoogle Scholar
  8. 8.
    Xie X, Mai Y, Zhou X (2005) Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater Sci Eng R: Rep 49(4):89–112.
  9. 9.
    Meeuw H, Viets C, Liebig WV, Schulte K, Fiedler B (2016) Morphological influence of carbon nanofillers on the piezoresistive response of carbon nanoparticle/epoxy composites under mechanical load. Eur Polym J 85:198–210. CrossRefGoogle Scholar
  10. 10.
    Novoselov KS, Fal’ko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490(7419):192–200. CrossRefGoogle Scholar
  11. 11.
    Ren W, Cheng HM (2014) The global growth of graphene. Nat Nanotechnol 9(10):726–730. CrossRefGoogle Scholar
  12. 12.
    Zhang Q, Huang JQ, Qian WZ, Zhang YY, Wei F (2013) The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage. Small (Weinheim an der Bergstrasse, Germany) 9(8):1237–1265. CrossRefGoogle Scholar
  13. 13.
    Inkwood Research (2018) Global carbon nanotubes market forecast 2018–2026.
  14. 14.
  15. 15.
    Graphene market to expand with strong cagr of 33.5% by 2023; companies indulging in collaborations to sustain market position.
  16. 16.
    Grobert N (2007) Carbon nanotubes—becoming clean. Mater Today 10(1–2):28–35. CrossRefGoogle Scholar
  17. 17.
    OCSiAl. Certification and h&s. Accessed 22 Sept 2018
  18. 18.
    OCSiAl. The first time ever, single wall carbon nanotubes complete reach registration. Accessed 4 Nov 2017
  19. 19.
    Sixth element achieves reach registration for graphene and graphene oxide—company news—news—the sixth element (changzhou) materials technology co.,ltd. Accessed 25 Sept 2018
  20. 20.
    Meeuw H, Radek M, Fiedler B (2018) Development of a colored GFRP with antistatic properties. AIP Conf Proc. Google Scholar
  21. 21.
    Ma PC, Siddiqui NA, Marom G, Kim JK (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos Part A Appl Sci Manuf 41(10):1345–1367. CrossRefGoogle Scholar
  22. 22.
    Ma AWK, Yearsley KM, Chinesta F, Mackley MR (2009) A review of the microstructure and rheology of carbon nanotube suspensions. Proc Inst Mech Eng Part N J Nanoeng Nanosyst 222(3):71–94. Google Scholar
  23. 23.
    Gojny FH, Wichmann M, Köpke U, Fiedler B, Schulte K (2004) Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content. Compos Sci Technol 64(15):2363–2371. CrossRefGoogle Scholar
  24. 24.
    Yoon H, Yamashita M, Ata S, Futaba DN, Yamada T, Hata K (2014) Controlling exfoliation in order to minimize damage during dispersion of long SWCNTs for advanced composites. Sci Rep 4:3907. CrossRefGoogle Scholar
  25. 25.
    Texter J (2014) Graphene dispersions. Curr Opin Colloid Interface Sci 19(2):163–174. CrossRefGoogle Scholar
  26. 26.
    Meeuw H, Wisniewski V, Fiedler B (2018) Frequency or amplitude?—Rheo-electrical characterization of carbon nanoparticle filled epoxy systems. Polymers 10(9):999. CrossRefGoogle Scholar
  27. 27.
    Inam F, Peijs T (2007) Re-agglomeration of carbon nanotubes in two-part epoxy system; influence of the concentration. In: 5th international Bhurbhan conference on applied science and technology (IBCAST 2007), Islamabad, Pakistan, 8–11 January 2007Google Scholar
  28. 28.
    Meeuw H, Körbelin J, von Bernstorff D, Augustin T, Liebig WV, Fiedler B (2018) Smart dispersion: Validation of OCT and impedance spectroscopy as solutions for in-situ dispersion analysis of CNP/EP-composites. Materialia. Google Scholar
  29. 29.
    Frydel J, Mewes D, Luther S, Schuster RH (2008) Rubber sheets calendering 1: contribution to preventing the occurrence of gas entrapments. KGK Kautschuk Gummi Kunststoffe 61(6):286–293Google Scholar
  30. 30.
    Magnier R, Agassant JF, Bastin P (2013) Experiments and modelling of calender processing for shear thinning thermoplastics between counter rotating rolls with differential velocities. Int Polym Process 28(4):437–446. CrossRefGoogle Scholar
  31. 31.
    Luther S (2003) Ber{\"u}cksichtigung der freien Knetoberfl{\"a}che beim Berechnen von Str{\"o}mungsfeldern im Kalanderspalt. Doctoral dissertationGoogle Scholar
  32. 32.
    Parvez K, Wu ZS, Li R, Liu X, Graf R, Feng X, Müllen K (2014) Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J Am Chem Soc 136(16):6083–6091. CrossRefGoogle Scholar
  33. 33.
    Leopold C, Augustin T, Schwebler T, Lehmann J, Liebig WV, Fiedler B (2017) Influence of carbon nanoparticle modification on the mechanical and electrical properties of epoxy in small volumes. J Colloid Interface Sci 506:620–632. CrossRefGoogle Scholar
  34. 34.
    Li Y, Zhang H, Crespo M, Porwal H, Picot O, Santagiuliana G, Huang Z, Barbieri E, Pugno NM, Peijs T, Bilotti E (2016) In situ exfoliation of graphene in epoxy resins: a facile strategy to efficient and large scale graphene nanocomposites. ACS Appl Mater Interfaces 8(36):24112–24122. CrossRefGoogle Scholar
  35. 35.
    Li Y, Zhang H, Porwal H, Huang Z, Bilotti E, Peijs T (2017) Mechanical, electrical and thermal properties of in-situ exfoliated graphene/epoxy nanocomposites. Compos Part A Appl Sci Manuf 95:229–236CrossRefGoogle Scholar
  36. 36.
    Paton KR, Varrla E, Backes C, Smith RJ, Khan U, O’Neill A, Boland C, Lotya M, Istrate OM, King P, Higgins T, Barwich S, May P, Puczkarski P, Ahmed I, Moebius M, Pettersson H, Long E, Coelho J, O’Brien SE, McGuire EK, Sanchez BM, Duesberg GS, McEvoy N, Pennycook TJ, Downing C, Crossley A, Nicolosi V, Coleman JN (2014) Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat Mater 13(6):624–630. CrossRefGoogle Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2019

Authors and Affiliations

  1. 1.Institute of Polymer and CompositesHamburg University of Technology (TUHH)HamburgGermany
  2. 2.EXAKT Advanced Technologies GmbHNorderstedtGermany
  3. 3.Center for Advancing Electronics Dresden (cfaed)Technische Universität DresdenDresdenGermany

Personalised recommendations