Advertisement

Highly iterative technology planning: processing of information uncertainties in the planning of manufacturing technologies

  • Jan ReyEmail author
  • Sebastian Apelt
  • Daniel Trauth
  • Patrick Mattfeld
  • Thomas Bergs
  • Fritz Klocke
Production Process
  • 13 Downloads

Abstract

Highly iterative product development is a promising approach to continuously involve customers in development and to meet global challenges such as short product life cycles and increasing variant diversity. In this context, the planning of production technologies, which takes place in parallel to product development, faces the challenge of processing uncertain product information in early planning phases. This is due to the frequent change of the required product characteristics while the product is being developed. Technology planners must therefore adapt the effort of their planning methods to the existing information uncertainty. This paper presents a new methodology for processing uncertain information from various information sources in technology planning. Firstly, individual information are modelled using fuzzy sets. Afterwards, a new method based on the Dempster–Shafer theory of evidence is presented, which enables an aggregation of individual information from different sources considering their uncertainties. The aggregated information regarding the product characteristics are used to determine the product maturity in the current iteration loop of the highly iterative development process. Finally, the user of the methodology selects a suitable technology planning level based on the prevailing product maturity.

Keywords

Manufacturing technology planning Highly iterative product development Information uncertainties Dempster–Shafer theory of evidence 

Notes

Acknowledgements

The authors would like to thank the German Research Foundation DFG for the support of the depicted research within the project KL 500/211-1 “Methodology for the highly iterative design of production process sequences”.

References

  1. 1.
    Schuh G, Wetterney T, Lau F, Schröder S (2016) Next generation hardware development: framework for a tailorable development method. In: Kocaoglu DF (ed) Proceedings of PICMET’16: technology management for social innovation, Portland International Center for Management of Engineering and Technology, Honolulu, pp 2563–2572.  https://doi.org/10.1109/PICMET.2016.7806807
  2. 2.
    Cooper RG, Sommer AF (2018) Agile—stage-gate for manufacturers. Res Technol Manag 61(2):17–26.  https://doi.org/10.1080/08956308.2018.1421380 CrossRefGoogle Scholar
  3. 3.
    Goevert K, Lindner M, Lindemann U (2018) Survey on agile methods and processes in physical product development. In: ISPIM Innovation Forum, Boston, pp 1–13Google Scholar
  4. 4.
    Böhmer AI, Hostettler R, Richter C, Lindemann U, Conradt J, Knoll A (2017) Towards agile product development—the role of prototyping. In: Maier A et al (eds) Proceedings of the 21st international conference on engineering design (ICED 17). Design methods and tools. The Design Society, Vancouver, pp 1–10Google Scholar
  5. 5.
    Komus A (2014) Status Quo Agile. Success and forms of usage—hybrid and selective approaches. In: Berlin Days of Software Engineering, BerlinGoogle Scholar
  6. 6.
    Sommer AF, Hedegaard C, Dukovska-Popovska I, Steger-Jensen K (2015) Improved product development performance through agile/stage-gate hybrids. The next-generation stage-gate process? Res Technol Manag 58(1):34–45.  https://doi.org/10.5437/08956308X5801236 CrossRefGoogle Scholar
  7. 7.
    Gartzen T, Brambring F, Basse F (2016) Target-oriented prototyping in highly iterative product development. Proced CIRP 51:19–23.  https://doi.org/10.1016/j.procir.2016.05.095 CrossRefGoogle Scholar
  8. 8.
    Milberg J, Müller S (2007) Integrated configuration and holistic evaluation of technology chains within process planning. Prod Eng Res Dev 1(4):401–406.  https://doi.org/10.1007/s11740-007-0055-3 CrossRefGoogle Scholar
  9. 9.
    Schuh G, Gartzen T, Basse F, Schrey E (2016) Enabling radical innovation through highly iterative product expedition in ramp up and demonstration factories. Proced CIRP 41:620–625.  https://doi.org/10.1016/j.procir.2016.01.014 CrossRefGoogle Scholar
  10. 10.
    Klocke F, Fallböhmer M, Kopner A, Trommer G (2000) Methods and tools supporting modular process design. Robot CIM Int Manuf 16(6):411–423.  https://doi.org/10.1016/S0736-5845(00)00024-7 CrossRefGoogle Scholar
  11. 11.
    Cooper RG (2017) Idea-to-launch gating systems. Better, faster, and more agile. Res Technol Manag 60(1):48–52.  https://doi.org/10.1080/08956308.2017.1255057 CrossRefGoogle Scholar
  12. 12.
    Zink L, Hostetter R, Böhmer AF, Lindemann U (2017) The use of prototypes within agile product development. Explorative Case Study of a Makeathon. In: Jardim-Goncalves et al (eds) Proceedings of 2017 international conference on engineering, technology and innovation (ICE/ITMC). Madeira, pp 68–77.  https://doi.org/10.1109/ICE.2017.8279871
  13. 13.
    Borsdorf R (2007) Methodische Ansatz zur Integration von Technologiewissen in den Produktentwicklungsprozess. Dissertation RWTH AachenGoogle Scholar
  14. 14.
    Klocke F, Buchholz S, Stauder J (2014) Technology chain optimization: a systematic approach considering manufacturing history. Prod Eng Res Dev 8(5):669–678.  https://doi.org/10.1007/s11740-014-0572-9 CrossRefGoogle Scholar
  15. 15.
    Stauder J, Buchholz S, Mattfeld P, Rey J (2016) Evaluating the substitution risk of production systems in volatile environments. Prod Eng Res Dev 10(3):305–318.  https://doi.org/10.1007/s11740-016-0670-y CrossRefGoogle Scholar
  16. 16.
    Cooper RG (2014) What’s next?: after stage-gate. Res Technol Manag 57(1):20–31.  https://doi.org/10.5437/08956308X5606963 MathSciNetCrossRefGoogle Scholar
  17. 17.
    Schneider S (2015) Agile Prozessplanung im Produktentstehungsprozess am Beispiel der Motorenproduktion. Dissertation Technische Universität DortmundGoogle Scholar
  18. 18.
    Klein TP (2016) Agiles Engineering im Maschinen- und Anlagenbau. Dissertation Technische Universität MünchenGoogle Scholar
  19. 19.
    Diels F (2018) Indikatoren für die Ermittlung agil zu entwickelnder Produktumfänge. Dissertation RWTH AachenGoogle Scholar
  20. 20.
    Salomons OW, van Houten FJAM, Kals HJJ (1993) Review of research in feature-based design. J Manuf Syst 12(2):113–132.  https://doi.org/10.1016/0278-6125(93)90012-I CrossRefGoogle Scholar
  21. 21.
    Klocke F, Müller J, Mattfeld P, Kukulies J, Schmitt R (2018) Integrative technology and inspection planning. A case study in medical industry. J Manuf Sci E-T ASME 140(5):1–10.  https://doi.org/10.1115/1.4039114 CrossRefGoogle Scholar
  22. 22.
    Klocke F, Brinksmeier E, Weinert K (2005) Capability profile of hard cutting and grinding processes. CIRP Ann 54(2):22–45.  https://doi.org/10.1016/S0007-8506(07)60018-3 CrossRefGoogle Scholar
  23. 23.
    Limbour P, Savic R, Petersen J, Kochs HD (2007) Fault tree analysis in an early design stage using the Dempster–Shafer theory of evidence. In: Aven T, Vinnem JE (eds) Risk, reliability and societal safety: proceedings of the european safety and reliability conference. Taylor & Francis, London, pp 713–722Google Scholar
  24. 24.
    Trommer G (2001) Methodik zur konstruktionsbegleitenden Generierung und Bewertung alternativer Fertigungsfolgen. Dissertation, RWTH AachenGoogle Scholar
  25. 25.
    Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353.  https://doi.org/10.1016/S0019-9958(65)90241-X CrossRefzbMATHGoogle Scholar
  26. 26.
    Heinsohn J, Socher-Ambrosius R (1999) Wissensverarbeitung. Eine Einführung. Spektrum Akademischer Verlag, HeidelbergzbMATHGoogle Scholar
  27. 27.
    Schell H (1997) Bewertung alternativer Handhabungs- und Fertigungsfolgen. Dissertation, RWTH AachenGoogle Scholar
  28. 28.
    Shafer G (1976) A mathematical theory of evidence. Princeton University Press, PrincetonzbMATHGoogle Scholar
  29. 29.
    Rebner G, Auer E, Luther W (2012) A verified realization of a Dempster–Shafer based fault tree analysis. Computing 94(2–4):313–324.  https://doi.org/10.1007/s00607-011-0179-3 MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Boersch I (2007) Wissensverarbeitung. Spektrum Akademischer Verlag, HeidelbergGoogle Scholar
  31. 31.
    Beierle C (2014) Methoden wissensbasierter Systeme. Springer, WiesbadenGoogle Scholar
  32. 32.
    Gordon J, Shortliffe EH (1990) The Dempster–Shafer theory of evidence. In: Pearl J, Shafer G (eds) Readings in uncertain reasoning. Morgan Kaufmann Series, San Mateo, pp 272–292Google Scholar
  33. 33.
    Rakowsky UK (2007) Fundamentals of the Dempster–Shafer theory and its applications to reliability modeling. Int J Reliab Qual Saf Eng 14(6):579–601.  https://doi.org/10.1142/S0218539307002817 CrossRefGoogle Scholar
  34. 34.
    Rao PK, Kong Z, Duty CE, Smith RJ, Kunc V, Love LJ (2016) Assessment of dimensional integrity and spatial defect localization in additive manufacturing using spectral graph theory. J Manuf Sci E-T ASME 138(5):1–12.  https://doi.org/10.1115/1.4031574 Google Scholar
  35. 35.
    Feldhusen J, Grote KH (2013) Pahl/Beitz Konstruktionslehre. Methoden und Anwendung erfolgreicher Produktentwicklung. Springer, BerlinCrossRefGoogle Scholar
  36. 36.
    Klocke F, Mattfeld P, Stauder J, Müller J, Grünebaum T (2017) Robust technology chain design. Considering undesired interactions within the technology chain. Prod Eng Res Dev 11(4–5):575–585.  https://doi.org/10.1007/s11740-017-0756-1 CrossRefGoogle Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2019

Authors and Affiliations

  1. 1.Laboratory for Machine Tools and Production Engineering (WZL)RWTH Aachen UniversityAachenGermany

Personalised recommendations