Production Engineering

, Volume 13, Issue 2, pp 227–237 | Cite as

Phase-specific residual stresses induced by deep drawing of lean duplex steel: measurement vs. simulation

  • Nicola SimonEmail author
  • Hannes Erdle
  • Stefan Walzer
  • Jens Gibmeier
  • Thomas Böhlke
  • Mathias Liewald
Computer Aided Engineering


The final geometry and fatigue behavior of deep drawn components in service is strongly influenced by deformation-induced residual stresses. For multi-phase materials, besides macro residual stresses (first kind), phase-specific residual stresses (second kind) occur on the microscale of the material. In order to influence the component characteristics positively it is important to predict the distribution of the residual stresses on both scales. A two-scale simulation and measurement approach is presented which allows for an efficient determination and validation of the phase-specific residual stresses. Finite-element simulations are performed to predict the deformation-induced macro residual stresses. A numerically efficient mean-field homogenization is used to estimate the total strain, the plastic strain and the eigenstrain on the grain level based on macroscopic stress, strain and stiffness data. The simulated residual stresses are compared to experimental data. Macro residual stresses are determined by means of incremental hole drilling method, whereas phase-specific residual stresses are analyzed with use of X-ray diffraction according to the \(\sin ^2\psi\) method. The simulation and measurement approaches are applied to a representative deep-drawing process for the lean duplex stainless steel \(\mathrm {X2CrNiN23{-4}}\), which consists of a ferritic and an austenitic phase both with the same volume fraction. The results indicate that the proposed two-scale simulation approach is well suited for the prediction of phase-specific residual stresses after a deep drawing process of lean duplex steel.


Residual stresses Two-scale simulation Mean-field homogenization Deep drawing 


  1. 1.
    Wohlfahrt H (1981) In: 1st Conference on Shot Peening, SeptGoogle Scholar
  2. 2.
    Behnken H, Hauk V (1993) On the influence of microresidual stresses during cyclic loading (Oberursel 1993), pp 733–742Google Scholar
  3. 3.
    Bensoussan A, Lions JL, Papanicolaou G (2011) Asymptotic analysis for periodic structures, vol 374. American Mathematical SocGoogle Scholar
  4. 4.
    Dvorak GJ, Zhang J (2001) Transformation field analysis of damage evolution in composite materials. J Mech Phys Solids 49(11):2517CrossRefzbMATHGoogle Scholar
  5. 5.
    Castañeda PP, Suquet P (1997) Nonlinear Composites. Advances in Applied Mechanics 34(C):171CrossRefzbMATHGoogle Scholar
  6. 6.
    Miehe C, Schotte J, Schröder J (1999) Computational micro–macro transitions and overall moduli in the analysis of polycrystals at large strains. Comput Mater Sci 16(1–4):372CrossRefGoogle Scholar
  7. 7.
    Moulinec H, Suquet P (1998) A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput Methods Appl Mech Eng 157(1–2):69MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kanouté P, Boso DP, Chaboche Jl, Schrefler BA (2009) Multiscale methods for composites: a review. Arch Comput Methods Eng 16(1):31CrossRefzbMATHGoogle Scholar
  9. 9.
    Feyel F, Chaboche Jl (2000) FE 2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC / Ti composite materials. Comput Methods Appl Mech Eng 183(3–4):309CrossRefzbMATHGoogle Scholar
  10. 10.
    Schröder J, Balzani D, Brands D (2011) Approximation of random microstructures by periodic statistically similar representative volume elements based on lineal-path functions. Arch Appl Mech 81(7):975CrossRefzbMATHGoogle Scholar
  11. 11.
    Fritzen F, Hodapp M (2016) The finite element square reduced (FE2R) method with GPU acceleration: towards three-dimensional two-scale simulations. International Journal for Numerical Methods in EngineeringGoogle Scholar
  12. 12.
    Rieger F, Böhlke T (2015) Microstructure based prediction and homogenization of the strain hardening behavior of dual-phase steel. Arch Appl Mech 85(9):1439CrossRefGoogle Scholar
  13. 13.
    Neumann R, Böhlke T (2016) Hashin-Shtrikman type mean field model for the two-scale simulation of the thermomechanical processing of steel. Int J Plast 77:1CrossRefGoogle Scholar
  14. 14.
    Schajer GS (1988) Measurement of non-uniform residual stresses using the hole-drilling method. Part I—stress calculation procedures. J Eng Mater Technol 110(4):338CrossRefGoogle Scholar
  15. 15.
    Sobolevski EG, Nau A, Scholtes B (2011) Residual stress analysis using the hole-drilling method and geometry specific calibration functions. In: Residual Stresses VIII, Materials Science Forum, vol. 681 (Trans Tech Publications, 2011), Materials Science Forum, vol. 681, pp 159–164Google Scholar
  16. 16.
    Simon N, Mrotzek T, Gibmeier J (2018) reliable residual stress analysis for thin metal sheets by incremental hole drilling [in press]. Materials Performance and Characterization 7(4)Google Scholar
  17. 17.
    Macherauch E, Muller P (1961) Das sin2\(\psi\)-Verfahren der röntgenographischen Spannungsmessung. Zeitschrift für angewandte Physik 13(7):305Google Scholar
  18. 18.
    Hill R (1948) A theory of the yielding and plastic flow of anisotropic metals. Proc R Soc Lond A: Math, Phys Eng Sci 193(1033):281MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Willis J (1981) Variational and related methods for the overall properties of composites. Elsevier, Oxford, pp 1–78zbMATHGoogle Scholar
  20. 20.
    Torquato S (2002) Statistical description of microstructures. Ann Rev Mater Res 32(1):77CrossRefGoogle Scholar
  21. 21.
    Hill R (1963) Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solids 11(5):357MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Ramberg W, Osgood WR (1943) Description of stress-strain curves by three parameters. National Advisory Committee For Aeronautics (Technical Note No. 902)Google Scholar
  23. 23.
    Mente T (2015) Numerische Simulation der wasserstoffunterstützten Rissbildung in austenitisch-ferritischen Duplexstählen. Doctoral thesis, Bundesanstalt für Materialforschung und -prüfung (BAM)Google Scholar
  24. 24.
    ASTM International. ASTM E837-08e2 standard test method for determining residual stresses by the hole-drilling strain-gage method (2009)Google Scholar
  25. 25.
    Wolfstieg U (1976) Die Symmetrisierung unsymmetrischer Interferenzlinien mit Hilfe von Spezialblenden. Härterei-Technische Mitteilungen 31:23Google Scholar
  26. 26.
    Kröner E (1958) Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls. Zeitschrift für Physik 151(4):504CrossRefGoogle Scholar
  27. 27.
    Warren BE, Averbach BL (1950) The effect of cold-work distortion on X-ray patterns. J Appl Phys 21(6):595CrossRefGoogle Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2019

Authors and Affiliations

  • Nicola Simon
    • 1
    Email author
  • Hannes Erdle
    • 2
  • Stefan Walzer
    • 3
  • Jens Gibmeier
    • 1
  • Thomas Böhlke
    • 2
  • Mathias Liewald
    • 3
  1. 1.Institute of Applied MaterialsKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Institute of Mechanical EngineeringKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  3. 3.Institute for Metal Forming TechnologyUniversity of StuttgartStuttgartGermany

Personalised recommendations