Advertisement

Production Engineering

, Volume 13, Issue 2, pp 181–188 | Cite as

Residual stresses in parts manufactured by near-net-shape-blanking

  • Jens StahlEmail author
  • Daniel Müller
  • Thomas Tobie
  • Roland Golle
  • Wolfram Volk
  • Karsten Stahl
Production Process
  • 75 Downloads

Abstract

Near-net-shape-blanking processes enable to manufacture functional surfaces in a single manufacturing step, which offers great potential in the production of gears, for example. Among these processes are fineblanking, blanking with a small die clearance, blanking with a v-ring, precision blanking with and without a blank holder. All of these are able to produce almost identical cut-surfaces, this means a high proportion of clean-shear almost without a fracture zone, but plastic deformation in the shearing zone varies due to the different tool setups. Therefore, the residual stresses in the produced parts, which are highly relevant for the fatigue behavior of shear-cut gears, vary as well. These process-induced residual stresses are addressed in this paper. First, sheet metal strips made of S355MC (1.0976) were subjected to a stress relief heat treatment to get a defined and low initial residual stress state. Afterwards, a circular hole was cut in the strips by the five different blanking processes. The cut surfaces of the thus produced parts were measured as well as the hardness. The residual stresses in tangential and axial direction were measured for a depth of up to 0.34 mm by X-ray diffraction. Finally, a comparison between the different manufacturing techniques regarding the residual stresses is carried out.

Keywords

Residual stresses Near-net-shape-blanking Fineblanking Precision blanking 

Notes

Acknowledgements

This work is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - VO 1487/30-1; STA 1198/13-1, and is part of the DFG-priority program “Targeted Use of Forming Induced Residual Stresses in Metal Components (SPP2013)”.

References

  1. 1.
    DIN 50125:2016-12 (2016) Testing of metallic materials—Tensile test pieces. Beuth Verlag GmbH, BerlinGoogle Scholar
  2. 2.
    Dias Batista, Lebrun, Flour Le, Inglebert (2000) Contact fatigue of automotive gears: evolution and effects of residual stresses introduced by surface treatments. Fract Eng Materi Struct 23(3):217–228CrossRefGoogle Scholar
  3. 3.
    Chen Z, Tang C, Lee T (2004) An investigation of tearing failure in fine-blanking process using coupled thermo-mechanical method. Int J Mach Tools Manuf 44(2):155–165.  https://doi.org/10.1016/j.ijmachtools.2003.10.010 CrossRefGoogle Scholar
  4. 4.
    Doege E, Fugger B (1983) Untersuchung der verschleißmechanismen beim scherschneiden. In: Bunk W, Hansen J, Geyer M (eds) Oberflächenbehandlung \(\cdot\) Bearbeitungsverfahren. Springer, Berlin Heidelberg, pp 273–310CrossRefGoogle Scholar
  5. 5.
    Fréour S, Gloaguen D, François M, Guillén R (2006) Application of inverse models and xrd analysis to the determination of ti-17 \(\beta\)-phase coefficients of thermal expansion. Scr Mater 54(8):1475–1478CrossRefGoogle Scholar
  6. 6.
    Hauk V, Nikolin HJ (1988) The evaluation of the distribution of residual stresses of the i. kind (rs i) and of the ii. kind (rs ii) in textured materials. Textures Microstruct 8:693–716.  https://doi.org/10.1155/TSM.8-9.693 CrossRefGoogle Scholar
  7. 7.
    Hörmann F (2008) Einfluss der prozessparameter auf einstufige scherschneidverfahren zum ausschneiden mit endkonturnaher form. Dissertation, Technische Universität München, MünchenGoogle Scholar
  8. 8.
    Klocke F (2014) Manufacturing processes 4; forming. RWTHedition. Springer, Berlin HeidelbergGoogle Scholar
  9. 9.
    König J, Koller P, Tobie T, Stahl K (2015) Correlation of relevant case properties and the flank load carrying capacity of case-hardened gears. In: Proceedings of the ASME 2015 international design engineering technical conferences and computers and information in engineering conferenceGoogle Scholar
  10. 10.
    Macherauch E (1987) Introduction to residual stress. In: Niku-Lari A (ed) Advances in surface treatments, vol 4. Pergamon Press, Oxford, pp 1–36Google Scholar
  11. 11.
    Macherauch E, Wolfstieg U (1973) Ursachen und bewertung von eigenspannungen. Chemie Ingenieur Technik 45(11):760–770.  https://doi.org/10.1002/cite.330451103 CrossRefGoogle Scholar
  12. 12.
    MackAldener M, Olsson M (2002) Analysis of crack propagation during tooth interiorfatigue fracture. Eng Fract Mech 69:2147–2162CrossRefGoogle Scholar
  13. 13.
    Manopulo N (2011) An ale based fe formulation for the 3d simulation of the fineblanking process. Ph.D. thesis, ETH Zurich.  https://doi.org/10.3929/ethz-a-006929254
  14. 14.
    McCLUNG RC (2007) A literature survey on the stability and significance of residual stresses during fatigue. Fatigue Fract Eng Mater Struct 30(3):173–205.  https://doi.org/10.1111/j.1460-2695.2007.01102.x CrossRefGoogle Scholar
  15. 15.
    Müller P, Macherauch E (1961) Das \(sin^2 \psi\)-verfahren der rontgenographischen spannungsmessung. Z Phys 13:305–312Google Scholar
  16. 16.
    Njeh A, Wieder T, Fuess H (2000) Grazing excidence diffraction versus grazing incidence diffraction for strain/stress evaluation in thin films. Powder Diffr 15(04):211–216.  https://doi.org/10.1017/S088571560001109X CrossRefGoogle Scholar
  17. 17.
    VDI 3345:1980-05 (1980) Fine blanking. Beuth Verlag GmbH, BerlinGoogle Scholar
  18. 18.
    S355mc (2011) High-strength steels for cold-forming, thermomechanically-rolled. Salzgitter Flachstahl GmbH, SalzgitterGoogle Scholar
  19. 19.
    DIN EN ISO 6507-1:2018-07 (2018) Metallic materials—Vickers hardness test—Part 1: test method. Beuth Verlag GmbH, BerlinGoogle Scholar
  20. 20.
    Pätzold I, Dittmann F, Feistle M, Golle R, Häfele P, Hoffmann H, Volk W (2017) Influence of shear cutting parameters on the fatigue behavior of a dual-phase steel. J Phys Conf Ser 896(1):012107.  https://doi.org/10.1088/1742-6596/896/1/012107 CrossRefGoogle Scholar
  21. 21.
    Prevéy PS (1986) X-ray diffraction residual stress techniques. In: Crankovic GM (ed) Metals handbook, vol 10. ASM International, Metals ParkGoogle Scholar
  22. 22.
    Schmidt R, Hellmann M, Burkhard R, Rademacher P, Höfel P, Birzer F, Hoffmann H (2007) Cold Forming and Fineblanking, 2 edn. Carl Hanser Verlag München WienGoogle Scholar
  23. 23.
    Seo S, Huang EW, Woo W, Lee SY (2017) Neutron diffraction residual stress analysis during fatigue crack growth retardation of stainless steel. Int J Fatigue 104:408–415.  https://doi.org/10.1016/j.ijfatigue.2017.08.007 CrossRefGoogle Scholar
  24. 24.
    Totten GE, Howes MAH, Inoue T (2002) Handbook of residual stress and deformation of steel. ASM International, Materials Park OhioGoogle Scholar
  25. 25.
    Česnik D, Bratu V, Kosec B, Bizjak M (2012) Distortion of ring type parts during fine-blanking. Metalurgija 51:157–160Google Scholar
  26. 26.
    Yasutomi T, Yonemura S, Yoshida T, Mizumura M, Hiwatashi S (2017) Blanking method with aid of scrap to reduce tensile residual stress on sheared edge. J Phys Conf Ser 896(1):012098.  https://doi.org/10.1088/1742-6596/896/1/012098 CrossRefGoogle Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2018

Authors and Affiliations

  1. 1.Chair of Metal Forming and Casting (utg)Technical University of MunichGarchingGermany
  2. 2.Institute of Machine Elements (FZG)Technical University of MunichGarchingGermany

Personalised recommendations