Production Engineering

, Volume 13, Issue 2, pp 189–200 | Cite as

Fatigue analysis of rolled components considering transient cyclic material behaviour and residual stresses

  • David Kühne
  • Christina Guilleaume
  • Martha Seiler
  • Peter Hantschke
  • Franz Ellmer
  • Thomas Linse
  • Alexander Brosius
  • Markus KästnerEmail author
Computer Aided Engineering


Forming processes generally lead to residual stresses. Compressive residual stresses can have a beneficial impact on the fatigue life of components, which is demonstrated here in terms of a skew-rolled hybrid shaft-hub connection. In order to set the basis for a systematic investigation of this effect, a strategy for the evaluation of the influence of residual stresses on the fatigue resistance of formed components is proposed. It involves the determination of the expectable residual stresses through a simulation of the forming process as well as a fatigue analysis. While state-of-the-art fatigue concepts assume unchanging cyclic material behaviour throughout the entire fatigue life of the component, this assumption is not adequate for residual stress-afflicted components. Hence, a generalization to transient cyclic material behaviour with an asymmetry in tension and compression is introduced.


Skew rolling Residual stresses Fatigue Notch strain concept Transient material behaviour 



Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) within the Priority Program 2013 “Targeted Use of Forming Induced Residual Stresses in Metal Components” under the grant numbers KA 3309/7-1 and BR 3500/21-1.


  1. 1.
    Beghini M, Bertini L, Monelli BD, Santus C, Bandini M (2014) Experimental parameter sensitivity analysis of residual stresses induced by deep rolling on 7075–T6 aluminium alloy. Surf Coat Technol 254:175–186. CrossRefGoogle Scholar
  2. 2.
    Blasón S, Rodríguez C, Belzunce J, Suárez C (2017) Fatigue behaviour improvement on notched specimens of two different steels through deep rolling, a surface cold treatment. Theor Appl Fract Mech 92:223–228. CrossRefGoogle Scholar
  3. 3.
    Brinksmeier E, Cammett JT, König W, Leskovar P, Peters J, Tönshoff HK (1982) Residual stresses measurement and causes in machining processes. CIRP Ann 31(2):491–510. CrossRefGoogle Scholar
  4. 4.
    Bruschi S, Altan T, Banabic D, Bariani PF, Brosius A, Cao J, Ghiotti A, Khraisheh M, Merklein M, Tekkaya AE (2014) Testing and modelling of material behaviour and formability in sheet metal forming. CIRP Ann 63(2):727–749. CrossRefGoogle Scholar
  5. 5.
    Buxbaum O, Lowak H (1983) Zur Steigerung der Schwingfestigkeit durch mechanisch erzeugte Druckeigenspannungen. Materialwissenschaft und Werkstofftechnik 14(12):421–428. CrossRefGoogle Scholar
  6. 6.
    Coffin LFJ, Schenectady NY (1954) A study of the effects of cyclic thermal stresses on a ductile metal. Trans Am Soc Mech Eng 76:931–950Google Scholar
  7. 7.
    Delgado P, Cuesta II, Alegre JM, Daz A (2016) State of the art of Deep Rolling. Precis Eng 46:1–10. CrossRefGoogle Scholar
  8. 8.
    Jang DY, Liou JH (1998) Study of stress development in axi-symmetric products processed by radial forging using a 3-D non-linear finite-element method. J Materials Process Technol 74(1):74–82. CrossRefGoogle Scholar
  9. 9.
    Kloos KH (1979) Eigenspannungen, definition und entstehungsursachen. Materialwissenschaft und Werkstofftechnik 10(9):293–302. CrossRefGoogle Scholar
  10. 10.
    Kloos KH (1995) Größeneinfluss. Einfluss der Probengröße auf das Ermüdungsverhalten bauteilähnlicher Kerbproben unter einstufigen und zufallsartigen Beanspruchsabläufen. In: Abschlussbericht Vorhaben Nr. 145-2, vol. 192. Forschungskuratorium Maschinenbau e.VGoogle Scholar
  11. 11.
    Kromm A (2011) Umwandlungsverhalten und Eigenspannungen beim Schweißen neuartiger LTT-Zusatzwerkstoffe. BAM-Dissertationsreihe. BAMGoogle Scholar
  12. 12.
    Lan J, Feng S, Hua L (2017) The residual stress of the cold rolled bearing race. Procedia Eng 207:1254–1259. CrossRefGoogle Scholar
  13. 13.
    Manson SS (1965) Fatigue: a complex subject—some simple approximations. Exp Mech 5(4):193–226. CrossRefGoogle Scholar
  14. 14.
    Masing G (1926) Eigenspannungen und Verfestigung beim Messing. In: Proc. 2nd Int. Cong. of Appl. Mech., pp 332–335Google Scholar
  15. 15.
    Merklein M, Andreas K, Engel U (2011) Influence of machining process on residual stresses in the surface of cemented carbides. Procedia Eng 19:252–257. CrossRefGoogle Scholar
  16. 16.
    Miner MA (1945) Cumulative damage in fatigue. J Appl Mech 12(3):159–164Google Scholar
  17. 17.
    Morrow J (1965) Cyclic Plastic Strain Energy and Fatigue of Metals. In: Lazan, B. (ed.) Internal Friction, Damping, and Cyclic Plasticity, pp. 45–45–43. ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959.
  18. 18.
    Neuber H (1961) Theory of stress concentration for shear-strained prismatical bodies with arbitrary nonlinear stress-strain law. J Appl Mech 28(4):544–550. MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Palmgren A (1924) Die lebensdauer von kugellagern. Zeitschrift des Vereins Deutscher Ingenieure 68(14):339–341Google Scholar
  20. 20.
    Pineau A, McDowell DL, Busso EP, Antolovich SD (2016) Failure of metals II: fatigue. Acta Materialia 107:484–507. CrossRefGoogle Scholar
  21. 21.
    Pintschovius L (1992) Macrostresses, microstresses and stress tensors. In: Hutchings MT, Krawitz AD (eds) Measurement of residual and applied stress using neutron diffraction. Springer, Dordrecht, pp 115–130CrossRefGoogle Scholar
  22. 22.
    Radaj D (1990) Design and analysis of fatigue resistant welded structures. In: Welding and Other Joining Technologies. Woodhead Publishing Ltd, CambridgeGoogle Scholar
  23. 23.
    Radaj D, Vormwald M (2007) Ermüdungsfestigkeit, 3 edn. Springer Berlin Heidelberg, Berlin, Heidelberg.
  24. 24.
    Ramberg W, Osgood W (1943) Description of stress-strain curves by three parameters. NACA Technical Note 902Google Scholar
  25. 25.
    Reiss A, Engel U, Merklein M (2013) Investigation on the influence of manufacturing parameters on the fatigue strength of components. Key Eng Mater 554–557:280–286. CrossRefGoogle Scholar
  26. 26.
    Rudkins NT, Modlen GF, Webster PJ (1994) Residual stresses in cold extrusion and cold drawing: a finite element and neutron diffraction study. J Materials Process Technol 45(1):287–292. CrossRefGoogle Scholar
  27. 27.
    Ruud CO (2000) Residual Stress Measurements. In: ASM Handbook, vol. 8, pp. 886–904. ASM InternationalGoogle Scholar
  28. 28.
    Smith DJ, Farrahi GH, Zhu WX, McMahon CA (2001) Experimental measurement and finite element simulation of the interaction between residual stresses and mechanical loading. Int J Fatigue 23(4):293–302. CrossRefGoogle Scholar
  29. 29.
    Smith KN, Topper T, Watson P (1970) A stress-strain function for the fatigue of metals. J Materials 5:767–778Google Scholar
  30. 30.
    Socie DF (1977) Fatigue-life prediction using local stress-strain concepts. Exp Mech 17:50. CrossRefGoogle Scholar
  31. 31.
    Tekkaya AE (1986) Ermittlung von eigenspannungen in der kaltmassivumformung. Springer, BerlinCrossRefGoogle Scholar
  32. 32.
    Tscheuschner T, Schomäcker M, Brosius A (2016) Fügen hybrider rotationsymmetrischer Bauteile durch Profil-Axial-Walzen. Tagungsband zur 23. Sächsische Fachtagung Umformtechnik SFU 2016, 7.-8.12.2016, DresdenGoogle Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2018

Authors and Affiliations

  • David Kühne
    • 1
  • Christina Guilleaume
    • 3
  • Martha Seiler
    • 2
  • Peter Hantschke
    • 1
  • Franz Ellmer
    • 1
  • Thomas Linse
    • 2
  • Alexander Brosius
    • 3
  • Markus Kästner
    • 2
    Email author
  1. 1.Structural Durability GroupTU DresdenDresdenGermany
  2. 2.Chair of Forming and Machining ProcessesTU DresdenDresdenGermany
  3. 3.Chair of Computational and Experimental Solid MechanicsTU DresdenDresdenGermany

Personalised recommendations