Production Engineering

, Volume 13, Issue 1, pp 99–106 | Cite as

A non-destructive testing method for joints by the measurement of the energy dissipation

  • Alexander WolfEmail author
  • Remi Lafarge
  • Alexander Brosius
Quality Assurance


The multi-material mix used nowadays requires several joints to establish a durable connection. It is necessary to test the joints without harming the parts to ensure the safety of the whole structure. Therefore, a new approach for a non-destructive testing method is presented and validated in this paper. The aim is to establish the testing routine as a fast and easy alternative to the few known non-destructive testing procedures. The approach measures the dissipation of energy by detecting the propagated waves on the surfaces of the joining partners next to the joint. After a short description and a theoretical insight in wave propagation, the experimental results will be substantiated by simulated findings. A bolted connection was chosen in the experiments due to the possibility to easily apply and check different torque moments. The simulation model was adapted and tested for different applied contact pressures. The general results show a detectable loss of energy that can be linked to different torque moments. Different effects are visible in the simulation and the experiments and will be described. The findings will be discussed and an short outlook will be given. The aim of proving the concept via experimental and simulated results was reached.


Non-destructive testing Mechanical joints Wave energy dissipation Torque moment analysis 



The experiments were performed on the SHPB provided by the chair of concrete structures. Thanks to research associate Tino KüHn for the help and discussions during and after the experiments. The simulations were calculated on the Bull HPC-Cluster of the ZIH at the TU Dresden. Special thanks for the generous supply of processing power.


  1. 1.
    Vogler C.Grenzen von Materialien überwinden (2012) Thermoplastische Klebefilme als smarte Haftvermittler von Metall und Kunststoff. Innovationsforum «Verfahrensintegration»Google Scholar
  2. 2.
    Seidlitz H, Ulke-Winter L, Kroll L (2014) New joining technology for optimized metal/composite assemblies. J Eng 2014:2014CrossRefGoogle Scholar
  3. 3.
    Gude M, Hufenbach W, Kupfer R, Freund A, Vogel C (2015) Development of novel form-locked joints for textile reinforced thermoplastices and metallic components. J Mater Process Technol 216:140–145CrossRefGoogle Scholar
  4. 4.
    Meschut G, Janzen V, Olfermann T (2014) Innovative and highly productive joining technologies for multi-material lightweight car body structures. J Mater Eng Perform 23(5):1515–1523CrossRefGoogle Scholar
  5. 5.
    Oplinger DW (1998) Mechanical fastening and adhesive bonding. In: Handbook of composites. Springer, Berlin, pp 610–666Google Scholar
  6. 6.
    Klebstoffe KB (1996) Praxiswissen chemie für techniker und ingenieure. ViewegTeubner, Berlin, pp 285–297Google Scholar
  7. 7.
    Oster R (2013) Herausforderungen an die ZfP bei Ihrer Anwendung an Faserverbundbauteilen. In: 1. Fachseminar Mikrowellen- und Terahertz-Prüftechnik in der PraxisGoogle Scholar
  8. 8.
    Wietzker S, Jördens C, Krumbholz N, Baudrit B, Bastian M, Koch M (2007) Terahertz imaging. J Eur Opt Soc Rapid Publ 2:2007CrossRefGoogle Scholar
  9. 9.
    Wu D, Zweschper Th, Salerno A, Busse G (1998) Lock-in thermography for nondestructive evaluation of aerospace structures. NDT. net 3:9Google Scholar
  10. 10.
    Meola C, Carlomagno GM, Squillace A, Giorleo G (2004) The use of infrared thermography for nondestructive evaluation of joints. Infrared Phys Technol 46(1–2):93–99CrossRefGoogle Scholar
  11. 11.
    Crostack HA, Yanik A, Nellesen J, Eifler D, Wagner G (2002) Non-destructive analysis of ultrasonic-welded composite materials. DGZfP annual meeting 2002: NDE in practice, development and researchGoogle Scholar
  12. 12.
    Peairs DM, Park G, Inman DJ (2004) Improving accessibility of the impedance-based structural health monitoring method. J Intell Mater Syst Struct 15(2):129–139CrossRefGoogle Scholar
  13. 13.
    Esteban J, Rogers CA (2000) Energy dissipation through joints. Compu Struct 75(4):347–359CrossRefGoogle Scholar
  14. 14.
    Ayres J, Rogers C, Chaudhry Z (1996) Qualitative health monitoring of a steel bridge joint via piezoelectric actuator/sensor patches. SPIE proceedings, pp 123–131Google Scholar
  15. 15.
    Füssel U, Kalich J, Großmann S et al (2014) Elektrisches Eigenschaftsprofil umformtechnischer Fügeverbindungen, volume 389 of EFB-Forschungsbericht. Europäische Forschungsgesellschaft für Blechverarbeitung e.V. (EFB), Hannover, 1, aufl. editionGoogle Scholar
  16. 16.
    Gaul L, Nitsche R (2001) The role of friction in mechanical joints. Appl Mech Rev 54(2):93 ffCrossRefGoogle Scholar
  17. 17.
    Zhang Z, Liu M, Su Z, Xiao Y (2016) Quantitative evaluation of residual torque of a loose bolt based on wave energy dissipation and vibro-acoustic modulation. J Sound Vib 383:156–170CrossRefGoogle Scholar
  18. 18.
    Chen W, Song B (2011) Split Hopkinson (Kolsky) bar. Mechanical engineering series. Springer, BostonCrossRefGoogle Scholar
  19. 19.
    Wolf A, Lafarge R, Kühn T, Brosius A (2018) Experimental analysis of mechanical joints strength by means of energy dissipation. In: AIP conference proceedings, volume Number 1960, p 050015. AIP PublishingGoogle Scholar
  20. 20.
    Amerini F, Meo M (2011) Structural health monitoring of bolted joints using linear and nonlinear acoustic/ultrasound methods. Struct Health Monit Int J 10(6):659–672CrossRefGoogle Scholar
  21. 21.
    Erhart T (2011) Review of solid element formulations in ls-dyna. In: LS-DYNA Forum proceedingsGoogle Scholar
  22. 22.
    SciPy developers. Scientific computing tools for python.

Copyright information

© German Academic Society for Production Engineering (WGP) 2018

Authors and Affiliations

  1. 1.Technische Universität DresdenDresdenGermany

Personalised recommendations