Production Engineering

, Volume 13, Issue 1, pp 71–77 | Cite as

Adaption of tool surface for sheet-bulk metal forming by means of pressurized air wet abrasive jet machining

  • Dennis FreiburgEmail author
  • R. Aßmuth
  • R. Garcia Carballo
  • D. Biermann
  • J. Henneberg
  • M. Merklein
Production Process


Surface structures are used for several applications in industry to enhance the characteristics of surfaces and therefore processes. One example is the Sheet-bulk metal forming process which combines the advantages of bulk and sheet metal forming. Due to the complex material flow and load, the tool surfaces do need adapted tribological properties. High feed milled surface structures have been used in the past to control the material flow of the sheets. But due the high stresses appearing, the surfaces show a running-in behavior which altereds the tribological conditions. Within this study, a pressurized air wet abrasive jet machining (PAWAJM) process is used for adapting the high feed milled surface in order to manipulate the tribological conditions. Therefore, the surfaces characteristics, residual stresses as well as the tribological effects were investigated. It is shown that the PAWAJM process can be used to modify the surface characteristics and thus the friction of the surface. In addition, it can be seen that residual compressive stresses are applied during the PAWAJM.


Surface modification Tribology Sheet-bulk metal forming 



This work was supported by the German Research Foundation (DFG) within the scope of the Transregional Collaborative Research Centre on sheet-bulk metal forming (CRC/TR 73, Subprojects B3 and C1).


  1. 1.
    Kleiner M, Geiger M, Klaus A (2003) Manufacturing of lightweight components by metal forming. Ann CIRP 52(2):521–542CrossRefGoogle Scholar
  2. 2.
    Mori K, Nakano T (2016) State-of-the-art of plate forging in Japan. Prod Eng Res Devel 10(1):81–91CrossRefGoogle Scholar
  3. 3.
    Merklein M, Allwood JM, Behrens BA, Brosius A, Hagenah H, Kuzman K, Mori K, Tekkaya AE, Weckenmann A (2012) Bulk forming of sheet metal. Ann CIRP 61(2):725–745CrossRefGoogle Scholar
  4. 4.
    Löffler M, Schulte R, Freiburg D, Biermann D, Stangier D, Tillmann W, Merklein M (2018) Control of the material flow in sheet-bulk metal forming using modifications of the tool surface. Int J Mater Form 52(2):1–10Google Scholar
  5. 5.
    Freiburg D, Löffler M, Merklein M, Biermann D (2017) Surface structuring of forming tool surfaces by high-feed milling. In: Schmitt R, Schuh G (eds) 7. WGP-Jahreskongress Aachen, 5.-6. Oktober 2017. Apprimus Wissenschaftsverlag, Aachen, p 63–70Google Scholar
  6. 6.
    Abele E, Dewald M, Heimrich F (2010) Leistungsgrenzen von Hochvorschubstrategien im Werkzeug- und Formenbau. Werkzeug und Formenbau 105:737–743Google Scholar
  7. 7.
    Zabel A, Surmann T, Peuker A (2008) Surface structuring and tool path planning for efficient milling of dies. In: Seventh international conference on high speed machining, p 16Google Scholar
  8. 8.
    Pilz F, Gröbel D, Merklein M (2018) Investigation of fatigue strength of tool steels in sheet-bulk metal forming. In: Proceedings of the 21st international ESAFORM conference on material forming: ESAFORM, p 160022Google Scholar
  9. 9.
    Denkena B, Biermann D (2014) Cutting edge geometries. CIRP Ann Manuf Technol 63:631–653CrossRefGoogle Scholar
  10. 10.
    Bouzakis K-D, Skordaris G, Michailidis N, Asimakopoulos A, Erkens G (2005) Effect on PVD coated cemented carbide inserts cutting performance of micro-blasting and lapping of their substrates. Surf Coat Technol 200:128–132CrossRefGoogle Scholar
  11. 11.
    Bouzakis K-D, Bouzakis E, Skordaris G, Makrimallakis S, Tsouknidas A, Katirtzoglou G, Gerardis S (2011) Effect of PVD films wet micro-blasting by various Al2O3 grain sizes on the wear behaviour of coated tools. Surf Coat Technol 205:128–132CrossRefGoogle Scholar
  12. 12.
    Biermann D, Aßmuth R, Schumann S, Rieger M, Kuhlenkötter B (2016) Wet abrasive jet machining to prepare and design the cutting edge micro shape. Procedia CIRP 45:195–198CrossRefGoogle Scholar
  13. 13.
    Mohlfeld A (2000) Trockenbohren mit PVD-beschichteten Hartmetallwerkzeugen. PhD Thesis, Leibniz University, HannoverGoogle Scholar
  14. 14.
    Terwey I (2011) Steigerung der Leistungsfähigkeit von Vollhartmetallwendelbohrern durch Strahlspanen. PhD Thesis, Technische Universität Dortmund, Vulkan Verlag, EssenGoogle Scholar
  15. 15.
    Harada Y, Fukaura K (2008) Influence of shot peening on surface characteristics of high-speed steels. Int J Mod Phys B 22(31n32):6094–6099CrossRefGoogle Scholar
  16. 16.
    Montgomery Douglas C (2010) Design and analysis of experiments, minitab manual, 7th edn. Wiley, OxfordGoogle Scholar
  17. 17.
    Wagner T (2013) Planning and multi-objective optimization of manufacturing processes by means of empirical surrogate models. Vulkan (Schriftenreihe des ISF), Essen, p 71Google Scholar
  18. 18.
    Sedlaček M, Vilhena L, Podgornik MS, Vižintin B J (2011) Surface topography modelling for reduced friction. SV-JME 57(09):674–680CrossRefGoogle Scholar
  19. 19.
    Bouzakis K-D, Klocke F, Skordaris G, Bouzakis E, Gerardis S, Katirtzoglou G, Makrimallakis S (2012) Influence of dry micro-blasting grain quality on wear behaviour of TiAlN coated tools. Wear 271(5–6):783–791Google Scholar
  20. 20.
    Vöhringer O (1978) Changes in the state of the material by shot peening. Conf Proc ICSP 3:185–204Google Scholar
  21. 21.
    Klocke F (2013) Manufacturing processes: forming. Springer, BerlinCrossRefzbMATHGoogle Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2018

Authors and Affiliations

  1. 1.Institute of Machining TechnologyTU Dortmund UniversityDortmundGermany
  2. 2.Institute of Manufacturing TechnologyFriedrich-Alexander-UniversityErlangenGermany

Personalised recommendations