Advertisement

Influence of punch sequence and prediction of wrinkling in textile forming with a multi-punch tool

  • Sven Coutandin
  • David Brandt
  • Paul Heinemann
  • Paul Ruhland
  • Jürgen Fleischer
Production Process
  • 2 Downloads

Abstract

Liquid composite moulding (LCM) processes show a high potential in automated, large scale production of continuous fibre-reinforced plastics (FRP). One of the most challenging steps is the forming of the two-dimensional textile material into a complex, three-dimensional fibre structure. In this paper, a multi-punch forming process is presented. The upper mould of a generic part geometry is divided into 15 independently controllable punches. Depending on the different punch sequences, draping effects as well as defects related to wrinkling and shearing of the textile material are investigated. It has been shown that the sequence of the punches has a significant influence on the final preform quality. To predict the resulting regions of wrinkling and shearing, a finite-element based simulation model is set up. Forming tests and simulations with different punch-sequences are then performed and evaluated for validation purposes. To make a statement about the global preform quality, different objective functions regarding wrinkling are presented and analysed.

Keywords

FRP Textile forming Multi-punch forming Draping simulation 

Notes

Acknowledgements

This paper is based on investigations within the research grant supported by the German Research Foundation DFG (Project Number 377740863). The calculations were performed on the computational resource bwUniCluster funded by the Ministry of Science, Research and Arts and the Universities of the State of Baden-Württemberg, Germany, within the framework program bwHPC.

References

  1. 1.
    Goede M, Stehlin M, Rafflenbeul L et al (2009) Super light car—lightweight construction thanks to a multi-material design and function integration. Eur Transp Res Rev 1(1):5–10.  https://doi.org/10.1007/s12544-008-0001-2 CrossRefGoogle Scholar
  2. 2.
    Marsh G (2004) Can composites get firmly on the rails? Reinf Plast 48(7):26–30.  https://doi.org/10.1016/S0034-3617(04)00373-X CrossRefGoogle Scholar
  3. 3.
    Fleischer J, Lanza G, Brabandt D, Wagner H (2012) Overcoming the challenges of automated preforming of semi-finished textiles. In: Symposium on automation of advanced composites and its technology, München, pp 114–143Google Scholar
  4. 4.
    Hufenbach W (ed) (2007) Textile Verbundbauweisen und Fertigungstechnologien für Leichtbaustrukturen des Maschinen- und Fahrzeugbaus: SPP 1123. Progressmedia, DresdenGoogle Scholar
  5. 5.
    Neitzel M (ed) (2014) Handbuch Verbundwerkstoffe: Werkstoffe, Verarbeitung, Anwendung, 2. Aufl. Hanser, MünchenGoogle Scholar
  6. 6.
    Angerer A, Ehinger C, Hoffmann A, Reif W, Reinhart G (2011) Design of an automation system for preforming processes in aerospace industries. In: IEEE international conference on automation science and engineering, pp 557–562.  https://doi.org/10.1109/CASE.2011.6042411
  7. 7.
    Bhattacharyya D (1997) Composite sheet forming. Elsevier, BurlingtonGoogle Scholar
  8. 8.
    Grieser T, Rieber G, Mitschang P (2012) Production of continuously formed high performance preforms for FRPC profiles. In: ECCM 2012—Composites at Venice, Proceedings of the 15th European conference on composite materialsGoogle Scholar
  9. 9.
    Förster F, Ballier F, Coutandin S et al (2017) Manufacturing of textile preforms with an intelligent draping and gripping system. Procedia CIRP 66:39–44.  https://doi.org/10.1016/j.procir.2017.03.370 CrossRefGoogle Scholar
  10. 10.
    Kordi MT, Hüsing M, Corves B (2007) Development of a multifunctional robot end-effector system for automated manufacture of textile preforms. In: IEEE/ASME international conference on advanced intelligent mechatronics, AIM.  https://doi.org/10.1109/AIM.2007.4412527
  11. 11.
    Christ M (2013) Cfk drapiereffektor zur automatisierten fertigung anspruchsvoller. Dissertation. Books On DemandGoogle Scholar
  12. 12.
    Allwood JM, Duncan SR, Cao J et al (2016) Closed-loop control of product properties in metal forming. CIRP Ann Manuf Technol 65(2):573–596.  https://doi.org/10.1016/j.cirp.2016.06.002 CrossRefGoogle Scholar
  13. 13.
    Hesse D, Hoppe F, Groche P (2017) Controlling product stiffness by an incremental sheet metal forming process. Procedia Manuf 10:276–285.  https://doi.org/10.1016/j.promfg.2017.07.058 CrossRefGoogle Scholar
  14. 14.
    Merklein M, Johannes M, Lechner M et al (2014) A review on tailored blanks—production, applications and evaluation. J Mater Process Technol 214(2):151–164.  https://doi.org/10.1016/j.jmatprotec.2013.08.015 CrossRefGoogle Scholar
  15. 15.
    Long A, Skordos A, Harrison P, Clifford M, Sutcliffe M (2006) Optimisation of sheet forming for textile composites using variable peripheral pressure. In: 27th International Conference SAMPE EUROPEGoogle Scholar
  16. 16.
    Chen S, Harper LT, Endruweit A et al (2015) Formability optimisation of fabric preforms by controlling material draw-in through in-plane constraints. Compos Part A Appl Sci Manuf 76:10–19.  https://doi.org/10.1016/j.compositesa.2015.05.006 CrossRefGoogle Scholar
  17. 17.
    Kärger L, Galkin S, Zimmerling C et al (2018) Forming optimisation embedded in a CAE chain to assess and enhance the structural performance of composite components. Compos Struct 192:143–152.  https://doi.org/10.1016/j.compstruct.2018.02.041 CrossRefGoogle Scholar
  18. 18.
    Nosrat Nezami F, Gereke T, Cherif C (2017) Active forming manipulation of composite reinforcements for the suppression of forming defects. Compos Part A Appl Sci Manuf 99:94–101.  https://doi.org/10.1016/j.compositesa.2017.04.011 CrossRefGoogle Scholar
  19. 19.
    Hardt DE, Olsen BA, Allison BT, Pasch K (1981) Sheet metal forming with discrete die surfaces. In: Ninth North American manufacturing research conference proceedings, pp 140–144Google Scholar
  20. 20.
    Haas E, Schwarz RC, Papazian JM (2002) Design and test of a reconfigurable forming die. J Manuf Process 4(1):77–85.  https://doi.org/10.1016/S1526-6125(02)70134-5 CrossRefGoogle Scholar
  21. 21.
    Simon D, Kern L, Wagner J et al (2014) A reconfigurable tooling system for producing plastic shields. Procedia CIRP 17:853–858.  https://doi.org/10.1016/j.procir.2014.01.095 CrossRefGoogle Scholar
  22. 22.
    Hardt DE, Webb RD, Suh NP (1982) Sheet metal die forming using closed-loop shape control. CIRP Ann 31(1):165–169.  https://doi.org/10.1016/S0007-8506(07)63290-9 CrossRefGoogle Scholar
  23. 23.
    Boers SS (2006) Optimum forming strategies with a 3D reconfigurable die. Technische Universiteit Eindhoven, EindhovenGoogle Scholar
  24. 24.
    Luo Y, Yang W, Liu Z et al (2016) Numerical simulation and experimental study on cyclic multi-point incremental forming process. Int J Adv Manuf Technol 85(5–8):1249–1259.  https://doi.org/10.1007/s00170-015-8030-1 CrossRefGoogle Scholar
  25. 25.
    Peng H, Liu H, Zhang X (2017) Numerical investigation of wrinkle for multi-point thermoforming of Polymethylmethacrylate sheet. IOP Confer Ser Mater Sci Eng.  https://doi.org/10.1088/1757-899X/242/1/012028 Google Scholar
  26. 26.
    Walczyk DF, Hosford JF, Papazian JM (2003) Using reconfigurable tooling and surface heating for incremental forming of composite aircraft parts. J Manuf Sci Eng 125(2):333.  https://doi.org/10.1115/1.1561456 CrossRefGoogle Scholar
  27. 27.
    Fleischer J, Albers A, Coutandin S et al (2016) Materialeffizienz im Resin-Transfer-Moulding-Prozess. VDI-Z 158:82–84Google Scholar
  28. 28.
    Hancock SG, Potter KD (2006) The use of kinematic drape modelling to inform the hand lay-up of complex composite components using woven reinforcements. Composites Part A Appl Sci Manuf 37(3):413–422.  https://doi.org/10.1016/j.compositesa.2005.05.044 CrossRefGoogle Scholar
  29. 29.
    Liebau DF (2013) Experimentelle und simulative Absicherung eines automatisierten Umformprozesses von Faserverbundpreforms, 1. Aufl. Verl. Dr. Hut, MünchenGoogle Scholar
  30. 30.
    Boisse P, Hamila N, Madeo A (2016) Modelling the development of defects during composite reinforcements and prepreg forming. Philos Trans A Math Phys Eng Sci 374(2071):20150269.  https://doi.org/10.1098/rsta.2015.0269 CrossRefGoogle Scholar
  31. 31.
    Long AC (2007) Composites forming technologies. Woodhead, CambridgeCrossRefGoogle Scholar
  32. 32.
    Nishi M, Hirashima T (2013) Approach for dry textile composite forming simulation. In: Proceedings of 19th international conference on composite materials (ICCM-19), Canada, pp 7486–7493Google Scholar
  33. 33.
    Dassault Systemes Simulia Corp (2016) Simulia Abaqus Documentation 2017Google Scholar
  34. 34.
    Dörr D, Joppich T, Schirmaier F, Mosthaf T, Kärger L, Henning F (2016) A method for validation of finite element forming simulation on basis of a pointwise comparison of distance and curvature. In: AIP conference proceedings.  https://doi.org/10.1063/1.4963567
  35. 35.
    Nasdala L (2015) FEM-Formelsammlung Statik und Dynamik: Hintergrundinformationen, Tipps und Tricks, 3. aktualisierte Aufl. Springer Vieweg, WiesbadenGoogle Scholar
  36. 36.
    Mattner T, Körbel W, Wrensch M et al (2018) Compensation of edge effects in picture frame testing of continuous fiber reinforced thermoplastics. Compos Part B Eng 142:95–101.  https://doi.org/10.1016/j.compositesb.2018.01.009 CrossRefGoogle Scholar
  37. 37.
    Prodromou AG, Chen J (1997) On the relationship between shear angle and wrinkling of textile composite preforms. Compos Part A Appl Sci Manuf 28(5):491–503.  https://doi.org/10.1016/S1359-835X(96)00150-9 CrossRefGoogle Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2018

Authors and Affiliations

  • Sven Coutandin
    • 1
  • David Brandt
    • 1
  • Paul Heinemann
    • 1
  • Paul Ruhland
    • 1
  • Jürgen Fleischer
    • 1
  1. 1.Karlsruhe Institute of Technology (KIT)wbk Institute of Production ScienceKarlsruheGermany

Personalised recommendations