Advertisement

Production Engineering

, Volume 13, Issue 1, pp 61–70 | Cite as

State-of-the-art and future challenge in fine-blanking technology

  • Qide Zheng
  • Xincun Zhuang
  • Zhen ZhaoEmail author
Production Process
  • 122 Downloads

Abstract

Fine-blanking is an effective and economical precision forming process that plays an important role in the manufacturing industry. Several factors, such as material, shape, and blankholder, can affect the quality of products. This paper reports some state-of-the-art research, which includes some changes in the material and shape of products, the evolution of blankholder, and the development of tools and presses. Meanwhile, some key facts about die roll, which is an important indicator when evaluating the quality of products, as well as digital technology, are introduced. Finally, an outlook of fine-blanking is provided with respect to the present situation, demonstrating its challenges and applications in the development of electric vehicles.

Keywords

Fine-blanking Lightweight Die roll Fine-blanking 4.0 

Notes

Acknowledgements

This work was supported by the National Nature Science Foundation of China (Grant no. 51475296) and the Fundamental Research Funds for the Central Universities for China.

References

  1. 1.
    Schiess F (1922) The fine blanking process. Germany, Patent 371004Google Scholar
  2. 2.
  3. 3.
    Feintool Technologie AG (2014) Forming and fineblanking: cost-effective manufacture of precision sheet metal components[M]. Verlag Moderne Industrie, LandsbergGoogle Scholar
  4. 4.
    Lee TC, Chan LC, Wu BJ (1997) Further investigation of the fine-blanking process employing large deformation theory[J]. J Mater Process Technol 66(1–3):258–263.  https://doi.org/10.1016/S0924-0136(96)02537-X CrossRefGoogle Scholar
  5. 5.
    Thipprakmas S, Jin M, Murakawa M (2007) An investigation of material flow analysis in fineblanking process[J]. J Mater Process Tech 192(4):237–242.  https://doi.org/10.1016/j.jmatprotec.2007.04.065 CrossRefGoogle Scholar
  6. 6.
    Elyasi M, Elyasi M (2013) An investigation on the parametric analysis of V-ring indenter mechanism in fine-blanking process[J]. Int J Mech Appl 3(4):76–80.  https://doi.org/10.5923/j.mechanics.20130304.03 Google Scholar
  7. 7.
    Lee TC, Chan LC, Zheng PF (1997) Application of the finite-element deformation method in the fine blanking process[J]. J Mater Process Technol 63(1):744–749.  https://doi.org/10.1016/S0924-0136(96)02717-3 CrossRefGoogle Scholar
  8. 8.
    Gram MD, Wagoner RH (2011) Fineblanking of high strength steels: control of material properties for tool life[J]. J Mater Process Technol 211(4):717–728.  https://doi.org/10.1016/j.jmatprotec.2010.12.005 CrossRefGoogle Scholar
  9. 9.
    Shuqin X, Hoogen M, Pyttel T, Hoffmann H (2002) FEM simulation and experimental research on the AlMg4.5Mn0.4 sheet blanking[J]. J Mater Process Tech 122(2):338–343.  https://doi.org/10.1016/S0924-0136(01)01239-0 CrossRefGoogle Scholar
  10. 10.
    Hu X, Wilkinson DS, Jain M et al (2015) Fuel cap stamping simulation of AA5754 sheets using a microstructure based macro-micro multi-scale approach[J]. Comput Mater Sci 98:354–365.  https://doi.org/10.1016/j.commatsci.2014.11.005 CrossRefGoogle Scholar
  11. 11.
    Xu C, Zhuang XC, Zhao Z (2015) Influence of cementite content and distribution on mechanical behavior of fine blanking steel[J]. J Shanghai Jiaotong Univ.  https://doi.org/10.16183/j.cnki.jsjtu.2015.10.004 (in Chinese) Google Scholar
  12. 12.
    Zhuang XC, Ma SM, Zhao Z (2017) A microstructure-based macro-micro multi-scale fine-blanking simulation of ferrite-cementite steels[J]. Int J Mech Sci 128–129:414–427.  https://doi.org/10.1016/j.ijmecsci.2017.05.018 CrossRefGoogle Scholar
  13. 13.
    Wang YL, Long HC (2011) A feature-based process planning approach for fineblanking-forming-stamping parts[J]. Adv Mater Res 308–310:816–819.  https://doi.org/10.4028/www.scientific.net/AMR.308-310.816 Google Scholar
  14. 14.
    Zheng PF, Chan LC, Lee TC (2010) Finite-element analysis of a combined fine-blanking and extrusion process[J]. Int J Numer Meth Eng 66(3):404–430.  https://doi.org/10.1002/nme.1556 CrossRefzbMATHGoogle Scholar
  15. 15.
    Thipprakmas S, Jin M, Murakawa M (2007) Study on flanged shapes in fineblanked-hole flanging process (FB-hole flanging process) using finite element method (FEM)[J]. J Mater Process Technol S 192–193(5):128–133.  https://doi.org/10.1016/j.jmatprotec.2007.04.040 CrossRefGoogle Scholar
  16. 16.
    Li R, Zheng P, Peng Q et al (2005) Numerical simulation on reciprocating fine blanking processes[J]. China Mech Eng.  https://doi.org/10.3321/j.issn:1004-132X.2005.06.022 (in Chinese) Google Scholar
  17. 17.
    Kondo K, Maeda K (1972) Development of a new precision shearing process: Opposed dies shearing process[M]. In: Proceedings of the twelfth international machine tool design and research conference, Macmillan Education, UK.  https://doi.org/10.1007/978-1-349-01397-5_9 Google Scholar
  18. 18.
    Wang JP, Huang GM, Lee HD et al (2013) Optimization of fine hydro-blanking[J]. Steel Res Int 84(8):777–783.  https://doi.org/10.1002/srin.201200255 CrossRefGoogle Scholar
  19. 19.
    Huang GM, Wang JP, Chen TT et al (2015) Optimal design for the fluid cavity shape in hydromechanical fine blanking[J]. Int J Adv Manuf Technol 78(1–4):153–160.  https://doi.org/10.1007/s00170-014-6591-z CrossRefGoogle Scholar
  20. 20.
    Wang JP (2015) A novel fine-blanking approach[J]. Int J Adv Manuf Technol 78(5–8):1015–1019.  https://doi.org/10.1007/s00170-014-6701-y CrossRefGoogle Scholar
  21. 21.
    Zhang YG, Deng M, Lin LV (2012) Technical study on the plane blank pressing fine-blanking based on the physical experiments[J]. J Netshape Form Eng.  https://doi.org/10.3969/j.issn.1674-6457.2012.03.013 (in Chinese) Google Scholar
  22. 22.
    Mao H, Zhou F, Liu Y et al (2016) Numerical and experimental investigation of the discontinuous dot indenter in the fine-blanking process[J]. J Manuf Process 24:90–99.  https://doi.org/10.1016/j.jmapro.2016.08.001 CrossRefGoogle Scholar
  23. 23.
    Wang JP, Huang GM, Chen CC et al (2013) Investigation of the shear-zone length in fine hydromechanical blanking[J]. Int J Adv Manuf Technol 68(9–12):2761–2769.  https://doi.org/10.1007/s00170-013-4879-z CrossRefGoogle Scholar
  24. 24.
    Stanke J, Trauth D, Feuerhack A et al (2017) Setup of a parameterized FE model for the die roll prediction in fine blanking using artificial neural networks[C].  https://doi.org/10.1088/1742-6596/896/1/012096
  25. 25.
    Kwak TS, Kim YJ, Bae WB (2002) Finite element analysis on the effect of die clearance on shear planes in fine blanking[J]. J Mater Process Tech 130(11):462–468.  https://doi.org/10.1016/S0924-0136(02)00767-7 CrossRefGoogle Scholar
  26. 26.
    Kim JD, Kim HK, Heo YM et al (2012) A study on the effect of V-ring position on the die roll height in fine blanking for special automobile seat recliner gear[J]. Adv Mater Res 383–390:7122–7127.  https://doi.org/10.4028/www.scientific.net/AMR.383-390.7122 Google Scholar
  27. 27.
    Djavanroodi F, Pirgholi A, Derakhshani E (2010) FEM and ANN analysis in fine-blanking process[J]. Adv Manuf Process 25(8):864–872.  https://doi.org/10.1080/10426910903367444 CrossRefGoogle Scholar
  28. 28.
    Yiemchaiyaphum S, Jin M, Thipprakmas S (2010) Application of back-up ring in fine-blanking process[J]. Key Eng Mater 443:140–145.  https://doi.org/10.4028/www.scientific.net/KEM.443.140 CrossRefGoogle Scholar
  29. 29.
    Voigts H, Trauth D, Feuerhack A et al (2018) Dependencies of the die-roll height during fine blanking of case hardening steel 16MnCr5 without V-ring using a nesting strategy[J]. Int J Adv Manuf Technol 95:3083.  https://doi.org/10.1007/s00170-017-1313-y CrossRefGoogle Scholar
  30. 30.
    Klocke F, Stanke J, Trauth D, Shirobokov A, Mattfeld P (2017) Artificial neural networks for fine blanking—a methodology for the development of predictive models for fine blanking[J]. WT Werkstattstechnik 107:719–724Google Scholar
  31. 31.
    Casalino G, Facchini F, Mortello M et al (2016) ANN modelling to optimize manufacturing processes: the case of laser welding[J]. IFAC PapersOnLine 49(12):378–383.  https://doi.org/10.1016/j.ifacol.2016.07.634 CrossRefGoogle Scholar
  32. 32.
    Facchini F, Mossa G, Mummolo G (2013) A model based on artificial neural network for risk assessment to polycyclic aromatic hydrocarbons in workplace[C]. In: Proceedings of the 25th european modeling and Simulation symposium, vol 2527. Athens, Greece, p 282289Google Scholar
  33. 33.
    Fan WF, Li JH (2009) An investigation on the damage of AISI-1045 and AISI-1025 steels in fine-blanking with negative clearance[J]. Mater Sci Eng A 499(1–2):248–251.  https://doi.org/10.1016/j.msea.2007.11.108 CrossRefGoogle Scholar
  34. 34.
    Qin SJ, Yang L, Peng JG (2009) Research on fine blanking process with stepped-edge punch[J]. Appl Mech Mater 16–19:495–499.  https://doi.org/10.4028/www.scientific.net/AMM.16-19.495 CrossRefGoogle Scholar
  35. 35.
    Hoffmann H, Hörmann F (2007) Clean-sheared and rectangular edges through counter-shaving[J]. Prod Eng Res Dev 1(2):157–162.  https://doi.org/10.1007/s11740-007-0027-7 CrossRefGoogle Scholar
  36. 36.
    Luo C, Chen Z, Zhou K et al (2017) A novel method to significantly decrease the die roll during fine-blanking process with verification by simulation and experiments[J]. J Mater Process Technol 250:254–260.  https://doi.org/10.1016/j.jmatprotec.2017.07.024 CrossRefGoogle Scholar
  37. 37.
    Demmel P, Kopp T, Golle R, Volk W, Hoffmann H (2012) Experimental investigation on the temperature distribution in the shearing zone during sheet metal blanking. Steel Research International, Wiley-VHC Verlag GmbH & Co. KGaA, Weinheim, pp 291–294Google Scholar
  38. 38.
    Yamaguchi H, Hendershot P, Pavel R et al (2016) Polishing of uncoated cutting tool surfaces for extended tool life in turning of Ti–6Al–4V[J]. J Manuf Process.  https://doi.org/10.1016/j.jmapro.2016.06.014 Google Scholar
  39. 39.
    Kalyan C, Samuel GL (2015) Cutting mode analysis in high speed finish turning of AlMgSi alloy using edge chamfered PCD tools[J]. J Mater Process Technol 216:146–159.  https://doi.org/10.1016/j.jmatprotec.2014.09.003 CrossRefGoogle Scholar
  40. 40.
    Klocke F, Shirobokov A, Trauth D et al (2016) Deep rolling of fine blanking punch edges[J]. IntJ Mater Form 9(4):489–498.  https://doi.org/10.1007/s12289-015-1235-x CrossRefGoogle Scholar
  41. 41.
    Lind L, Peetsalu P, Sergejev F (2015) Wear of different PVD coatings at industrial fine-blanking field tests[J]. Mater Sci 21(3):343–348.  https://doi.org/10.5755/j01.ms.21.3.7249 Google Scholar
  42. 42.
    Klocke F, Raedt HW (2001) Formulation and testing of optimised coating properties with regard to tribological performance in cold forging and fine blanking applications[J]. Int J Refract Metal Hard Mater 19(4–6):495–505.  https://doi.org/10.1016/S0263-4368(01)00029-4 CrossRefGoogle Scholar
  43. 43.
    Lugscheider E, Bobzin K, Piñero C et al (2004) Development of a superlattice (Ti,Hf,Cr)N coating for cold metal forming applications[J]. Surf Coat Technol 177(03):616–622.  https://doi.org/10.1016/S0257-8972(03)00935-6 CrossRefGoogle Scholar
  44. 44.
    Schmidt R-A, Birzer F, Höfel P et al (2006) Umformen und Feinschneiden: Handbuch für Verfahren, Stahlwerkstoffe, Teilgestaltung[M]. Carl Hanser Verlag Munchen, Wien.  https://doi.org/10.3139/9783446411050 CrossRefGoogle Scholar
  45. 45.
    Marti A (2016) Device and method for sharing sheared edges on stamped or fine-blanked parts having a burr, U.S. Patent Application, CN 105382068 14/819,975[P], 25 Feb 2016Google Scholar
  46. 46.
    Xiang H, Zhuang X, Zhao Z (2009) Knowledge-based system for strip layout design in fineblanking[C]. IEEE International Conference on Intelligent Computing and Intelligent Systems. IEEE, pp 443–447.  https://doi.org/10.1109/ICICISYS.2009.5358146
  47. 47.
    Duffey MR, Sun Q (1991) Knowledge-based design of progressive stamping dies[J]. J Mater Process Technol 28(1):221–227.  https://doi.org/10.1016/0924-0136(91)90221-Y CrossRefGoogle Scholar
  48. 48.
    Li C, Jianjun L, Jianyong W et al (2001) HPRODIE: using feature modelling and feature mapping to speed up progressive die design[J]. Int J Prod Res 39(18):4133–4151.  https://doi.org/10.1080/00207540110050591 CrossRefzbMATHGoogle Scholar
  49. 49.
    Tor SB, Britton GA, Zhang WY (2005) A knowledge-based blackboard framework for stamping process planning in progressive die design[J]. Int J Adv Manuf Technol 26(7–8):774–783.  https://doi.org/10.1007/s00170-003-2037-8 CrossRefGoogle Scholar
  50. 50.
    Klocke F, Zimmermann M, Bäcker V et al (2011) Finite element simulation of an analogy process for the fine blanking of helical gears[C]. IEEE International Symposium on Assembly and Manufacturing. IEEE, pp 1–6.  https://doi.org/10.1109/ISAM.2011.5942332
  51. 51.
    Feuerhack A, Trauth D, Mattfeld P et al (2015) Fine blanking of helical gears[M]// 60 excellent inventions in metal forming. Springer, Berlin Heidelberg, pp 187–192.  https://doi.org/10.1007/978-3-662-46312-3_29 Google Scholar
  52. 52.
    Merklein M, Allwood JM, Behrens BA et al (2012) Bulk forming of sheet metal[J]. CIRP Ann Manuf Technol 61(2):725–745.  https://doi.org/10.1016/j.cirp.2012.05.007 CrossRefGoogle Scholar
  53. 53.
    Zhong TS, Ma JB, Wei XH (2011) The research and development of CNC energy-saving compound servo press[J]. China Metalform Equip Manuf Technol 2:30–33.  https://doi.org/10.3969/j.issn.1672-0121.2011.02.008 (in Chinese) Google Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2018

Authors and Affiliations

  1. 1.Institute of Forming Technology and Equipment, School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.National Engineering Research Center of Die and Mold CADShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations