Advertisement

Serum albumin and risk of cardiovascular events in primary and secondary prevention: a systematic review of observational studies and Bayesian meta-regression analysis

  • Pasquale PignatelliEmail author
  • Alessio Farcomeni
  • Danilo Menichelli
  • Daniele Pastori
  • Francesco Violi
CE - Systematic reviews and meta-analysis
  • 31 Downloads

Abstract

The predictive role of serum albumin (SA) has been evaluated in primary prevention studies. We want to assess the association of SA with the subsequent risk of cardiovascular events (CVE) in primary and secondary prevention studies. We performed a systematic review and Bayesian meta-regression analysis. Studies were identified by PubMed and EMBASE database using a combination of the following terms and MeSH terms: “serum albumin”, “myocardial infarction, “cardiovascular events”, “percutaneous coronary intervention” and “coronary restenosis”. No time restriction of the research was applied. Two experienced physicians reviewed data on outcome measures and assessed the quality rating. The main outcomes were CVE including myocardial infarction, coronary heart disease, percutaneous coronary intervention and coronary restenosis. 15 studies of SA and CVE were identified involving 65,077 subjects with a mean age of 57.89 ± 6.05 years and a mean follow-up of 9.4 (±5.56) years. Subjects under SA cut-off of 3.8 g/dL had a combined hazard ratio (HR) for CVE of 2.16 [95% confidence interval (CI) 1.93–2.45]. An increased risk for CVE was also evident using SA as a continuous variable (HR = 1.89, 95% CI 1.5–2.39). Females and males had a similar risk for CVE (HR 2.46, 95% CI 1.92–3.16, and HR 1.46, 95% CI 1.27–1.69, respectively). We found a similar risk of CVE between primary and secondary prevention studies (HR 1.79, 95% CI 1.5–2.17, and HR 2.47, 95% CI 2.24–2.75, respectively). Low SA levels are associated with an increased risk of CVE, not only in subjects free from CVE, but also in patients who already experienced a CVE.

Keywords

Serum albumin Cardiovascular events Thrombosis 

Notes

Funding

None.

Compliance with ethical standards

Conflict of interest

The authors report no conflict of interest.

Ethical approval

Given the study type (review article), ethical approval was not necessary.

Informed consent

For this type of study formal consent is not required.

References

  1. 1.
    Gabay C, Kushner I (1999) Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 340(6):448–454.  https://doi.org/10.1056/NEJM199902113400607 CrossRefPubMedGoogle Scholar
  2. 2.
    Paar M, Rossmann C, Nusshold C, Wagner T, Schlagenhauf A, Leschnik B, Oettl K, Koestenberger M, Cvirn G, Hallstrom S (2017) Anticoagulant action of low, physiologic, and high albumin levels in whole blood. PLoS ONE 12(8):e0182997.  https://doi.org/10.1371/journal.pone.0182997 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Plantier JL, Duretz V, Devos V, Urbain R, Jorieux S (2016) Comparison of antioxidant properties of different therapeutic albumin preparations. Biologicals 44(4):226–233.  https://doi.org/10.1016/j.biologicals.2016.04.002 CrossRefPubMedGoogle Scholar
  4. 4.
    Djousse L, Rothman KJ, Cupples LA, Levy D, Ellison RC (2002) Serum albumin and risk of myocardial infarction and all-cause mortality in the Framingham offspring study. Circulation 106(23):2919–2924CrossRefGoogle Scholar
  5. 5.
    Nelson JJ, Liao D, Sharrett AR, Folsom AR, Chambless LE, Shahar E, Szklo M, Eckfeldt J, Heiss G (2000) Serum albumin level as a predictor of incident coronary heart disease: the atherosclerosis risk in communities (ARIC) study. Am J Epidemiol 151(5):468–477CrossRefGoogle Scholar
  6. 6.
    Danesh J, Collins R, Appleby P, Peto R (1998) Association of fibrinogen, C-reactive protein, albumin, or leukocyte count with coronary heart disease: meta-analyses of prospective studies. JAMA 279(18):1477–1482CrossRefGoogle Scholar
  7. 7.
    Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 6(7):e1000100.  https://doi.org/10.1371/journal.pmed.1000100 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Tierney JF, Stewart LA, Ghersi D, Burdett S, Sydes MR (2007) Practical methods for incorporating summary time-to-event data into meta-analysis. Trials 8:16.  https://doi.org/10.1186/1745-6215-8-16 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Higgins JP, Thompson SG, Spiegelhalter DJ (2009) A re-evaluation of random-effects meta-analysis. J R Stat Soc Ser A Stat Soc 172(1):137–159.  https://doi.org/10.1111/j.1467-985X.2008.00552.x CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Dumas BT, Watson WA (1971) Biggs HG (1997) Albumin standards and the measurement of serum albumin with bromocresol green. Clin Chim Acta 258(1):21–30.  https://doi.org/10.1016/s0009-8981(96)06447-9 CrossRefGoogle Scholar
  11. 11.
    Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109):629–634CrossRefGoogle Scholar
  12. 12.
    Goldwasser P, Feldman J (1997) Association of serum albumin and mortality risk. J Clin Epidemiol 50(6):693–703CrossRefGoogle Scholar
  13. 13.
    Caraceni P, Domenicali M, Tovoli A, Napoli L, Ricci CS, Tufoni M, Bernardi M (2013) Clinical indications for the albumin use: still a controversial issue. Eur J Intern Med 24(8):721–728.  https://doi.org/10.1016/j.ejim.2013.05.015 CrossRefPubMedGoogle Scholar
  14. 14.
    Celik IE, Yarlioglues M, Kurtul A, Duran M, Koseoglu C, Oksuz F, Aksoy O, Murat SN (2016) Preprocedural albumin levels and risk of in-stent restenosis after coronary stenting with bare-metal stent. Angiology 67(5):478–483.  https://doi.org/10.1177/0003319715598084 CrossRefPubMedGoogle Scholar
  15. 15.
    Farb A, Weber DK, Kolodgie FD, Burke AP, Virmani R (2002) Morphological predictors of restenosis after coronary stenting in humans. Circulation 105(25):2974–2980CrossRefGoogle Scholar
  16. 16.
    Violi F, Pignatelli P (2012) Platelet oxidative stress and thrombosis. Thromb Res 129(3):378–381.  https://doi.org/10.1016/j.thromres.2011.12.002 CrossRefPubMedGoogle Scholar
  17. 17.
    Dayal S, Wilson KM, Motto DG, Miller FJ Jr, Chauhan AK, Lentz SR (2013) Hydrogen peroxide promotes aging-related platelet hyperactivation and thrombosis. Circulation 127(12):1308–1316.  https://doi.org/10.1161/CIRCULATIONAHA.112.000966 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Carnevale R, Pignatelli P, Lenti L, Buchetti B, Sanguigni V, Di Santo S, Violi F (2007) LDL are oxidatively modified by platelets via GP91(phox) and accumulate in human monocytes. FASEB J 21(3):927–934.  https://doi.org/10.1096/fj.06-6908com CrossRefPubMedGoogle Scholar
  19. 19.
    Violi F, Pignatelli P, Basili S (2010) Nutrition, supplements, and vitamins in platelet function and bleeding. Circulation 121(8):1033–1044.  https://doi.org/10.1161/CIRCULATIONAHA.109.880211 CrossRefPubMedGoogle Scholar
  20. 20.
    Zhang Z, Pereira SL, Luo M, Matheson EM (2017) Evaluation of blood biomarkers associated with risk of malnutrition in older adults: a systematic review and meta-analysis. Nutrients 9(8):E829.  https://doi.org/10.3390/nu9080829 CrossRefPubMedGoogle Scholar
  21. 21.
    Kucharska-Newton AM, Couper DJ, Pankow JS, Prineas RJ, Rea TD, Sotoodehnia N, Chakravarti A, Folsom AR, Siscovick DS, Rosamond WD (2009) Hemostasis, inflammation, and fatal and nonfatal coronary heart disease: long-term follow-up of the atherosclerosis risk in communities (ARIC) cohort. Arterioscler Thromb Vasc Biol 29(12):2182–2190.  https://doi.org/10.1161/ATVBAHA.109.192740 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Corti MC, Salive ME, Guralnik JM (1996) Serum albumin and physical function as predictors of coronary heart disease mortality and incidence in older persons. J Clin Epidemiol 49(5):519–526CrossRefGoogle Scholar
  23. 23.
    Gillum RF, Makuc DM (1992) Serum albumin, coronary heart disease, and death. Am Heart J 123(2):507–513CrossRefGoogle Scholar
  24. 24.
    Wada H, Dohi T, Miyauchi K, Shitara J, Endo H, Doi S, Naito R, Konishi H, Tsuboi S, Ogita M, Kasai T, Okazaki S, Isoda K, Suwa S, Daida H (2017) Impact of serum albumin levels on long-term outcomes in patients undergoing percutaneous coronary intervention. Heart Vessels 32(9):1085–1092.  https://doi.org/10.1007/s00380-017-0981-8 CrossRefPubMedGoogle Scholar
  25. 25.
    Gonzalez-Pacheco H, Amezcua-Guerra LM, Sandoval J, Martinez-Sanchez C, Ortiz-Leon XA, Pena-Cabral MA, Bojalil R (2017) Prognostic implications of serum albumin levels in patients with acute coronary syndromes. Am J Cardiol 119(7):951–958.  https://doi.org/10.1016/j.amjcard.2016.11.054 CrossRefPubMedGoogle Scholar
  26. 26.
    Chien SC, Chen CY, Leu HB, Su CH, Yin WH, Tseng WK, Wu YW, Lin TH, Chang KC, Wang JH, Wu CC, Yeh HI, Chen JW (2017) Association of low serum albumin concentration and adverse cardiovascular events in stable coronary heart disease. Int J Cardiol 241:1–5.  https://doi.org/10.1016/j.ijcard.2017.04.003 CrossRefPubMedGoogle Scholar
  27. 27.
    Kurtul A, Murat SN, Yarlioglues M, Duran M, Ocek AH, Koseoglu C, Celik IE, Kilic A, Aksoy O (2016) Usefulness of serum albumin concentration to predict high coronary SYNTAX score and in-hospital mortality in patients with acute coronary syndrome. Angiology 67(1):34–40.  https://doi.org/10.1177/0003319715575220 CrossRefPubMedGoogle Scholar
  28. 28.
    Plakht Y, Gilutz H, Shiyovich A (2016) Decreased admission serum albumin level is an independent predictor of long-term mortality in hospital survivors of acute myocardial infarction. Soroka acute myocardial infarction II (SAMI-II) project. Int J Cardiol 219:20–24.  https://doi.org/10.1016/j.ijcard.2016.05.067 CrossRefPubMedGoogle Scholar
  29. 29.
    Kurtul A, Ocek AH, Murat SN, Yarlioglues M, Demircelik MB, Duran M, Ergun G, Cay S (2015) Serum albumin levels on admission are associated with angiographic no-reflow after primary percutaneous coronary intervention in patients with ST-segment elevation myocardial infarction. Angiology 66(3):278–285.  https://doi.org/10.1177/0003319714526035 CrossRefPubMedGoogle Scholar
  30. 30.
    Oduncu V, Erkol A, Karabay CY, Kurt M, Akgun T, Bulut M, Pala S, Kirma C (2013) The prognostic value of serum albumin levels on admission in patients with acute ST-segment elevation myocardial infarction undergoing a primary percutaneous coronary intervention. Coron Artery Dis 24(2):88–94.  https://doi.org/10.1097/MCA.0b013e32835c46fd CrossRefPubMedGoogle Scholar
  31. 31.
    Su W, An T, Zhou Q, Huang Y, Zhang J, Zhang Y, Wei B, Sun X, Zou C, Lou K (2012) Serum albumin is a useful prognostic indicator and adds important information to NT-proBNP in a Chinese cohort of heart failure. Clin Biochem 45(7–8):561–565.  https://doi.org/10.1016/j.clinbiochem.2012.02.010 CrossRefPubMedGoogle Scholar
  32. 32.
    Schillinger M, Exner M, Mlekusch W, Amighi J, Sabeti S, Schlager O, Wagner O, Minar E (2004) Serum albumin predicts cardiac adverse events in patients with advanced atherosclerosis—interrelation with traditional cardiovascular risk factors. Thromb Haemost 91(3):610–618.  https://doi.org/10.1160/TH03-08-0504 CrossRefPubMedGoogle Scholar

Copyright information

© Società Italiana di Medicina Interna (SIMI) 2019

Authors and Affiliations

  1. 1.I Clinica Medica, Atherothrombosis Centre, Department of Internal Medicine and Medical SpecialtiesSapienza University of RomeRomaItaly
  2. 2.Mediterranea CardiocentroNaplesItaly
  3. 3.Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly

Personalised recommendations