Advertisement

Internal and Emergency Medicine

, Volume 14, Issue 7, pp 1091–1100 | Cite as

Right ventricular diameter predicts all-cause mortality in heart failure with preserved ejection fraction

  • Gaspare ParrinelloEmail author
  • Daniele Torres
  • Silvio Buscemi
  • Tiziana Di Chiara
  • Francesco Cuttitta
  • Mauro Cardillo
  • Francesca Romana Pluchinotta
  • Rosario Scaglione
  • Salvatore Paterna
  • Antonio Pinto
IM - ORIGINAL

Abstract

Left ventricular ejection fraction (EF) is helpful to differentiate heart failure (HF) phenotype in clinical practice. The aim of the study was to identify simple echocardiographic predictors of post-discharge all-cause mortality in hospitalized HF patients. Patients with acute HF (75 ± 9.8 years), classified in preserved (≥ 50%) and reduced (< 50%) EF (HFpEF and HFrEF, respectively), were enrolled. The mean follow-up period was of 25.4 months. Patients definitively analyzed were 135. At multivariate Cox model, right ventricular diameter (RVd), inferior vena cava diameter (IVCd) and blood urea nitrogen (BUN) resulted to be significantly associated with all-cause mortality in HFpEF (HR 2.4, p = 0.04; HR 1.06, p = 0.02; HR 1.02, p = 0.01), whereas, left atrial volume (LAV) was significantly associated with mortality in HFrEF (HR 1.06, p = 0.006). Excluding LAV from the model, only COPD remained an independent predictor of all-cause mortality (HR 2.15, p = 0.04) in HFrEF. At Kaplan–Meier analysis, no differences of survival between HFrEF and HFpEF were found, however, significantly increased all-cause mortality for higher values of basal-RVd, BUN, and IVCd (log-rank p = 0.0065, 0.0063, 0.0005) in HFpEF, and for COPD and higher LAV (log-rank p = 0.0046, p = 0.033) in HFrEF. These data are indicative that in patients hospitalized with HF, EF is not a suitable predictor of long-term all-cause mortality, whereas, right ventricular volumetric remodeling and IVCd have a prognostic role in HFpEF as well as LAV in HFrEF. Our study suggests that besides EF, other echocardiographic parameters are helpful to optimize the phenotyping and prognostic stratification of HF.

Keywords

Heart failure Ejection fraction Cardiac remodeling Right ventricular diameter Mortality 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Statement on human and animal rights

The study was performed in accordance with the principles of Declaration of Helsinki and its appendices, and with local and national laws. Approval was obtained from the Hospital’s Institutional Review Board and Ethics Committee (A.O.U.P. Paolo Giaccone).

Informed consent

For this study, formal consent was not required.

References

  1. 1.
    Murphy SL, Xu JQ, Kochanek KD (2013) Deaths: final data for 2010. National vital statics reports, vol 61. National Center for Health Statistics, Hyattsville, p 2013Google Scholar
  2. 2.
    Inamdar AA, Inamdar AC (2016) Heart failure: diagnosis, management and utilization. J Clin Med 5(7):62CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Zakeri R, Mohammed SF (2015) Epidemiology of right ventricular dysfunction in heart failure with preserved ejection fraction. Curr Heart Fail Rep 12(5):295–301CrossRefPubMedGoogle Scholar
  4. 4.
    McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Böhm M, Dickstein K et al (2012) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Eur Heart J 33:1787–1847CrossRefPubMedGoogle Scholar
  5. 5.
    Zoghbi WA, Adams D, Bonow RO, Enriquez-Sarano M, Foster E, Grayburn PA, Hahn RT, Han Y, Hung J, Lang RM, Little SH, Shah DJ, Shernan S, Thavendiranathan P, Thomas JD, Weissman NJ (2017) Recommendations for noninvasive evaluation of native valvular regurgitation a report from the American Society of Echocardiography developed in collaboration with the Society for Cardiovascular Magnetic Resonance. J Am Soc Echocardiogr 30(4):303–371CrossRefGoogle Scholar
  6. 6.
    Lang RM, Badano LP, Mor-Avi V et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28(1):1–39.e14CrossRefPubMedGoogle Scholar
  7. 7.
    Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, González-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GMC, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P, ESC Scientific Document Group (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 37(27):2129–2200CrossRefGoogle Scholar
  8. 8.
    Fonarow GC (2008) Epidemiology and risk stratification in acute heart failure. Am Heart J 155(2):200–207CrossRefPubMedGoogle Scholar
  9. 9.
    Aronson D, Mittleman MA, Burger AJ (2004) Elevated blood urea nitrogen level as a predictor of mortality in patients admitted for decompensated heart failure. Am J Med 116:466–473CrossRefPubMedGoogle Scholar
  10. 10.
    Filippatos G, Rossi J, Lloyd-Jones DM, Stough WG, Ouyang J, Shin DD, O’connor C, Adams KF, Orlandi C, Gheorghiade M (2007) Prognostic value of blood urea nitrogen in patients hospitalized with worsening heart failure: insights from the acute and chronic therapeutic impact of a vasopressin antagonist in chronic heart failure (ACTIV in CHF) study. J Card Fail 13:360–364CrossRefPubMedGoogle Scholar
  11. 11.
    Cauthen CA, Lipinski MJ, Abbate A, Appleton D, Nusca A, Varma A, Goudreau E, Cowley MJ, Vetrovec GW (2008) Relation of blood urea nitrogen to long-term mortality in patients with heart failure. Am J Cardiol 101:1643–1647CrossRefPubMedGoogle Scholar
  12. 12.
    Parrinello G, Torres D, Testani JM et al (2015) Blood urea nitrogen to creatinine ratio is associated with congestion and mortality in heart failure patients with renal dysfunction. Intern Emerg Med 10(8):965–972CrossRefPubMedGoogle Scholar
  13. 13.
    Kazory A (2010) Emergence of blood urea nitrogen as a biomarker of neurohormonal activation in heart failure. Am J Cardiol 106(5):694–700CrossRefPubMedGoogle Scholar
  14. 14.
    Ferrara F, Gargani L, Ostenfeld E, D’Alto M, Kasprzak J, Voilliot D, Selton-Suty C, Vriz O, Marra AM, Argiento P, Stanziola AA, Cittadini A, D’Andrea A, Bossone E (2017) Imaging the right heart pulmonary circulation unit: insights from advanced ultrasound techniques. Echocardiography 34(8):1216–1231CrossRefPubMedGoogle Scholar
  15. 15.
    Gorter TM, Hoendermis ES, van Veldhuisen DJ et al (2016) Right ventricular dysfunction in heart failure with preserved ejection fraction: a systematic review and meta-analysis. Eur J Heart Fail 18(12):1472–1487CrossRefPubMedGoogle Scholar
  16. 16.
    Haddad F, Doyle R, Murphy DJ, Hunt SA (2008) Right ventricular function in cardiovascular disease, part II: pathophysiology, clinical importance, and management of right ventricular failure. Circulation 117:1717–1731CrossRefPubMedGoogle Scholar
  17. 17.
    Katz DH, Burns JA, Aguilar FG, Beussink L, Shah SJ (2014) Albuminuria is independently associated with cardiac remodeling, abnormal right and left ventricular function, and worse outcomes in heart failure with preserved ejection fraction. JACC Heart Fail 2:586–596CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Paulus WJ, Tschope C (2013) A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol 62:263–271CrossRefPubMedGoogle Scholar
  19. 19.
    Sano M, Minamino T, Toko H et al (2007) p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload. Nature 446:444–448CrossRefPubMedGoogle Scholar
  20. 20.
    Vonk Noordegraaf A, Westerhof BE, Westerhof N (2017) The Relationship between the right ventricle and its load in pulmonary hypertension. J Am Coll Cardiol 69(2):236–243CrossRefPubMedGoogle Scholar
  21. 21.
    Triposkiadis F, Pieske B, Butler J et al (2016) Global left atrial failure in heart failure. Eur J Heart Fail 18(11):1307–1320CrossRefPubMedGoogle Scholar
  22. 22.
    Cameli M, Mandoli GE, Mondillo S (2017) Left atrium: the last bulwark before overt heart failure. Heart Fail Rev 22(1):123–131CrossRefPubMedGoogle Scholar
  23. 23.
    Stefanadis C, Dernellis J, Toutouzas P (2001) A clinical appraisal of left atrial function. Eur Heart J 22:22–36CrossRefPubMedGoogle Scholar
  24. 24.
    Triposkiadis F, Harbas C, Kelepeshis G et al (2007) Left atrial remodeling in patients younger than 70 years with diastolic and systolic heart failure. J Am Soc Echocardiogr 20:177–185CrossRefPubMedGoogle Scholar
  25. 25.
    Melenovsky V, Hwang SJ, Redfield MM et al (2015) Left atrial remodeling and function in advanced heart failure with preserved or reduced ejection fraction. Circ Heart Fail 8:295–303CrossRefPubMedGoogle Scholar
  26. 26.
    Quinones MA, Greenberg BH, Kopelen HA et al (2000) Echocardiographic predictors of clinical outcome in patients with left ventricular dysfunction enrolled in the SOLVD registry and trials: significance of left ventricular hypertrophy. Studies of left ventricular dysfunction. J Am Coll Cardiol 35:1237–1244CrossRefPubMedGoogle Scholar
  27. 27.
    Rossi A, Temporelli PL, Quintana M et al (2009) MeRGE heart failure collaborators. independent relationship of left atrial size and mortality in patients with heart failure: an individual patient meta-analysis of longitudinal data (MeRGE heart failure). Eur J Heart Fail 11:929–936CrossRefPubMedGoogle Scholar
  28. 28.
    Casaclang-Verzosa G, Gersh BJ, Tsang TS (2008) Structural and functional remodeling of the left atrium: clinical and therapeutic implications for atrial fibrillation. J Am Coll Cardiol 51:1–11CrossRefPubMedGoogle Scholar
  29. 29.
    Dzeshka MS, Lip GY, Snezhitskiy V, Shantsila E (2015) Cardiac fibrosis in patients with atrial fibrillation: mechanisms and clinical implications. J Am Coll Cardiol 66:943–959CrossRefPubMedGoogle Scholar
  30. 30.
    Frangogiannis NG (2012) Matricellular proteins in cardiac adaptation and disease. Physiol Rev 92:635–688CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Weber KT, Sun Y, Bhattacharya SK et al (2013) Myofibroblastmediated mechanisms of pathological remodelling of the heart. Nat Rev Cardiol 10:15CrossRefGoogle Scholar

Copyright information

© Società Italiana di Medicina Interna (SIMI) 2019

Authors and Affiliations

  • Gaspare Parrinello
    • 1
    Email author
  • Daniele Torres
    • 1
  • Silvio Buscemi
    • 1
  • Tiziana Di Chiara
    • 1
  • Francesco Cuttitta
    • 1
  • Mauro Cardillo
    • 1
  • Francesca Romana Pluchinotta
    • 2
  • Rosario Scaglione
    • 1
  • Salvatore Paterna
    • 1
  • Antonio Pinto
    • 1
  1. 1.Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialities“G. D’Alessandro” – PROMISE, - A.O.U.P. “Paolo Giaccone”, University of PalermoPalermoItaly
  2. 2.Department of Paediatric Cardiac SurgeryIRCCS Policlinico San Donato MilaneseMilanItaly

Personalised recommendations