Skip to main content

Advertisement

Log in

Arterial base deficit in pulmonary embolism is an index of severity and diagnostic delay

  • EM - Original
  • Published:
Internal and Emergency Medicine Aims and scope Submit manuscript

Abstract

In acute pulmonary embolism, patients free from circulatory failure usually present a blood gas pattern consistent with respiratory alkalosis. We investigated whether the appearance of arterial base deficit in these patients indicates disease severity and diagnostic delay. Twenty-four consecutive patients with pulmonary embolism were retrospectively evaluated. Twelve patients had arterial base excess ≥0 mmol/L (Group 1), and 12 patients arterial base deficit <0 mmol/L (Group 2). No patient showed signs of circulatory failure. Group 1 was characterized by a mean base excess of 2.2 ± 1.7 mmol/L, while in Group 2, the mean base deficit was −1.9 ± 0.7 mmol/L (p < 0.0001). At 1 week since the embolism, 11 patients of Group 1 and 6 of Group 2 received a PE diagnosis (p < 0.05). The vascular obstruction index was more severe in Group 2 than in Group 1 (48 ± 12 vs. 36 ± 17%, respectively, p < 0.05). In Group 2, the PaCO2 was lower (33 ± 3 vs. 36 ± 5 mmHg, respectively, p < 0.05), the arterial pH was decreased (7.442 ± 0.035 vs. 7.472 ± 0.050, respectively, p = 0.097), the Pv50 was lower (28.3 ± 1.7 vs. 29.8 ± 1.6 mmHg, respectively, p < 0.05), the aHCO3 was lower (22.5 ± 0.7 vs. 26.1 ± 1.6 mmol/L, respectively; p < 0.0001), while between the Groups, O2 delivery, O2 mixed venous saturation, and O2 extraction ratio were equivalent. Despite no signs of circulatory failure, an arterial Base deficit develops in patients with respiratory alkalosis subsequent to more severe pulmonary vascular obstruction. Diagnostic delay favors a base deficit. Depending on the degree of hypocapnia, there may be limitation of peripheral O2 uptake despite adequate O2 availability. Progressive bicarbonate deficit suggests an increased risk for underlying conditions such as cardio-respiratory disorders or cancer, and requires close control and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Grant D, Rosen P (2007) Patients with intermediate or high risk of a pulmonary embolism continue to pose a diagnosis challenge. Intern Emerg Med 2:231–233

    Article  CAS  PubMed  Google Scholar 

  2. Mays EE (1973) An arterial blood gas diagram for clinical use. Chest 63:793–800

    Article  CAS  PubMed  Google Scholar 

  3. Marini C, Di Ricco G, Rossi G, Rindi M, Palla R, Giuntini C (1988) Fibrinolytic effects of urokinase and heparin in acute pulmonary embolism: a randomised clinical trial. Respiration 54:162–173

    Article  CAS  PubMed  Google Scholar 

  4. Prediletto R, Paoletti P, Fornai E, Perissinotto A, Petruzzelli S, Formiche B, Ruschi S, Palla A, Giannella-Neto A, Giuntini C (1990) Natural course of treated pulmonary embolism Evaluation by perfusion lung scintigraphy, gas exchange, and chest roentgenogram. Chest 97:554–561

    Article  CAS  PubMed  Google Scholar 

  5. Santolicandro A, Prediletto R, Fornai E, Formichi B, Begliuomini E, Giannella-Neto A, Giuntini C (1995) Mechanisms of hypoxemia and hypocapnia in pulmonary embolism. Am J Respir Crit Care Med 152:336–347

    CAS  PubMed  Google Scholar 

  6. Cvitanic O, Marino PL (1989) Improved use of arterial blood gas analysis in suspected pulmonary embolism Chest 95:48–51

    CAS  Google Scholar 

  7. Shapiro BA, Harrison RA, Cane RD, Kozlowki-Templin R (1989) Respiratory acid-base balance. In: Clinical application of blood gases, 4th edn. Year Book Medical Publishers, Chicago, pp 43–46

  8. D’Alonzo GE, Dantzker DR (1984) Gas exchange alterations following pulmonary embolism. Clin Chest Med 5:411–419

    PubMed  Google Scholar 

  9. Wilson JE III, Pierce AK, Johnson RL Jr, Winga ER, Harrel WR, Curry GC, Mullins CB (1971) Hypoxemia in pulmonary embolism, a clinical study. J Clin Invest 50:481–491

    Article  PubMed  Google Scholar 

  10. Manier G, Castaing Y, Guenard H (1985) Determinants of hypoxemia during the acute phase of pulmonary embolism in humans. Am Rev Respir Dis 132:332–338

    CAS  PubMed  Google Scholar 

  11. Manier G, Castaing Y (1992) Influence of cardiac output on oxygen exchange in acute pulmonary embolism. Am Rev Respir Dis 145:130–136

    CAS  PubMed  Google Scholar 

  12. Dantzker DR, Bower JS (1982) Alteration in gas exchange following pulmonary thromboembolism. Chest 81:495–501

    Article  CAS  PubMed  Google Scholar 

  13. Vieillard-Baron A, Page B, Augarde R, Prin S, Qanadli S, Beauchet A, Dubourg O, Jardin F (2001) Acute cor pulmonale in massive pulmonary embolism: incidence, echocardiographic pattern, clinical implications and recovery rate. Intensive Care Med 27:1481–1486

    Article  CAS  PubMed  Google Scholar 

  14. Miniati M, Pistolesi M, Marini C, Di Ricco G, Formichi B, Prediletto R, Allescia G, Tonelli L, Sostman HD, Giuntini C (1996) Value of perfusion lung scan in the diagnosis of pulmonary embolism: results of the prospective investigative study of acute pulmonary embolism diagnosis (PISA-PED). Am J Respir Crit Care Med 154:1387–1393

    CAS  PubMed  Google Scholar 

  15. Meyer G, Collignon MA, Guinet F, Jeffrey AA, Barritault L, Sors H (1990) Comparison of perfusion lung scanning and angiography in the estimation of vascular obstruction in acute pulmonary embolism. Eur J Nucl Med 17:315–319

    Article  CAS  PubMed  Google Scholar 

  16. Collier CR, Hackney JD, Mohler JG (1972) Use of extracellular base excess in diagnosis of acid-base disorders: a conceptual approach. Chest 61(Suppl):6S–12S

    Google Scholar 

  17. Stern LI, Simmons DH (1969) Estimation of non-respiratory acid–base abnormalities. J Appl Physiol 27:21–24

    CAS  PubMed  Google Scholar 

  18. Siggaard-Andersen O (1963) The acid–base status of the blood. Scand J Clin Lab Invest 15(Suppl 70):1–134

    PubMed  Google Scholar 

  19. Severinghaus JW (1979) Simple, accurate equations for human blood O2 dissociation computations. J Appl Physiol 46:599–602

    CAS  PubMed  Google Scholar 

  20. Sostman DH, Miniati M, Gottschalk A, Matta F, Stein PD, Pistolesi M (2008) Sensitivity and specifity of perfusion scintigraphy combined with chest radiography for acute pulmonary embolism in PIOPED II. J Nucl Med 49:1741–1748

    Article  PubMed  Google Scholar 

  21. Miniati M, Monti S, Bottai M, Scoscia E, Bauleo C, Tonelli L, Dainelli A, Giuntini C (2006) Survival and restoration of pulmonary perfusion in a long-term follow-up of patients after acute pulmonary embolism. Medicine (Baltimore) 85:253–262

    Article  Google Scholar 

  22. Sasahara AA, Hyers TM, Cole CM, Ederer F, Murray JA, Wenger NK, Sherry S, Stengle JM (1973) The urokinase pulmonary embolism trial chapter XIII: associated clinical and laboratory findings. Circulation (Suppl. II) 47:81–85

    Google Scholar 

  23. Eichenholz A, Mulhausen RO, Anderson WE, MacDonald FM (1962) Primary hypocapnia: a cause of metabolic acidosis. J Appl Physiol 17:283–288

    CAS  PubMed  Google Scholar 

  24. Mc Intyre KM, Sasahara AA (1971) The hemodynamic response to pulmonary embolism in patients without prior cardiopulmonary disease. Am J Cardiol 28:288–294

    Article  CAS  Google Scholar 

  25. Murray JF (1986) Diffusion of gases, oxyhemoglobin equilibrium, and carbon dioxide equilibrium. In: W.B. Saunders Company (eds) The normal lung. The basis for diagnosis and treatment of pulmonary disease, 2nd edn. W.B. Saunders Company, Philadelphia, p 176

  26. Elliot CG, Goldhaber SZ, Jensen RL (2005) Delays in diagnosis of deep vein thrombosis and pulmonary embolism. Chest 128:3372–3376

    Article  Google Scholar 

  27. Sutton GC, Hall RJC, Kerr H (1977) Clinical course and late prognosis of treated sub massive, acute minor, and chronic pulmonary thromboembolism. Brit Heart J 39:1135–1142

    Article  CAS  PubMed  Google Scholar 

  28. Meneveau N, Ming LP, Séronde MF, Mersin N, Schiele F, Caulfield F, Bernard Y, Bassand JP (2003) In-hospital and long-term outcome after sub-massive and massive pulmonary embolism submitted to thrombolytic therapy. Eur Heart J 24:1447–1454

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Ezio Ferdeghini for his excellent technical support.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Marini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marini, C., Di Ricco, G., Formichi, B. et al. Arterial base deficit in pulmonary embolism is an index of severity and diagnostic delay. Intern Emerg Med 5, 235–243 (2010). https://doi.org/10.1007/s11739-010-0354-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11739-010-0354-0

Keywords

Navigation