Acta Physiologiae Plantarum

, 41:182 | Cite as

Allelopathic interactions of invasive black locust (Robinia pseudoacacia L.) with secondary aliens: the physiological background

  • Peter FerusEmail author
  • Dominika Bošiaková
  • Jana Konôpková
  • Peter Hoťka
  • Géza Kósa
  • Nataliya Melnykova
  • Segiy Kots
Original Article


Despite of numerous benefits, black locust (Robinia pseudoacacia L.) is an invasive tree species in Slovakia and Hungary. Recently, secondary local invasions of black locust plantations by black cherry (Prunus serotina Ehrh.) and common hackberry (Celtis occidentalis L.) have been observed in these countries. In this study, we describe these unique tree-to-tree interactions directly in the field as well as simulated in the laboratory (1% water extracts from leaves and twigs applied on leaf and soil). In the field, we observed no effect on tree height and trunk diameter as well as leaf metabolic parameters caused by black cherry. However, the laboratory experiment showed a reduction in nodulation, and thus N fixation rate per plant, which did not mirror in the shoot and root dry matter (DM) production. On the other hand, common hackberry significantly affected tree height as well as leaf amino acid and total nitrogen concentration, but not the content of soluble sugars and hydrogen peroxide in the field. The laboratory experiment revealed significant reductions in nodulation, N fixation rate per plant, shoot and root DM and leaf hydrogen peroxide, nevertheless, a noticeable soluble protein accumulation. Thus, we can conclude that common hackberry, but not black cherry, can effectively suppress black locust N metabolism and growth.


Invasive plants Secondary invasion Black locust (Robinia pseudoacacia L.) Black cherry (Prunus serotina Ehrh.) Common hackberry (Celtis occidentalis L.) Allelopathic interactions 



This work was supported by the European Cooperation in Science and Technology’s project COST action TD1209. Special thanks to Dr. Ján Kukla, Dr. Margita Kuklová (Institute of Forest Ecology SAS) and Dr. Michaela Havrlentová (Research Institute of Plant Production, National Agricultural and Food Centre) for technical support.


  1. Al-Wakeel SAM, Gabr MA, Hamid AA, Abu-El-Soud WM (2007) Allelopathic effects of Acacia nilotica leaf residue on Pisum sativum L. Allelopath J 19(2):411–422Google Scholar
  2. Annighöfer P, Mölder I, Zerbe S, Kawaletz H, Terwei A, Ammer C (2012) Biomass functions for the two alien tree species Prunus serotina Ehrh. and Robinia pseudoacacia L. in floodplain forest of Northern Italy. Eur J Forest Res 131:1619–1635Google Scholar
  3. Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Env 32:666–681Google Scholar
  4. Bao Z, Nilsen ET (2015) Interactions of seedlings of the invasive tree Ailanthus altissima and the native tree Robinia pseudoacacia under low nutrient conditions. J Plant Interact 10(1):173–184Google Scholar
  5. Bartha D, Csiszár A, Vince Z (2008) Black locust (Robinia pseudoacacia L.). In: Botta-Dukát Z, Balogh L (eds) The most important invasive plants in Hungary. Institute of Botany and Ecology HAS, Hungary, pp 63–76Google Scholar
  6. Batish DR, Lavanya K, Singh HP, Kohli RK (2007) Phenolic allelochemicals released by Chenopodium murale affect growth, nodulation and macromolecule content in chickpea and pea. Plant Growth Reg 51:119–128Google Scholar
  7. Benčať F (1982) Atlas rozšírenia cudzokrajných drevín na Slovensku [Atlas of exotic tree species spreading in Slovakia]. Veda, BratislavaGoogle Scholar
  8. Benčaťová B, Benčať T (2008) The black locust communities from Slovak Gate to Danube. Thaiszia 18(1):3–7Google Scholar
  9. Blum U, Gerig TM (2006) Interrelationship between p-coumaric acid, evapotranspiration, soil water content, and leaf expansion. J Chem Ecol 32(8):1818–1834Google Scholar
  10. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedPubMedCentralGoogle Scholar
  11. Call LJ, Nilsen ET (2005) Analysis of interactions between the invasive tree-of-heaven (Ailanthus altissima) and the native black locust (Robinia pseudoacacia). Plant Ecol 176:275–285Google Scholar
  12. Cao B, Song L-H, Zhang T-T (2009) Allelopathic effects of solution extracted from soil around Ailanthus altissima root zone on germination of Robinia pseudoacacia seeds. J Nanjing For Univ 33(3):51–54Google Scholar
  13. Chabrerie O, Loinard J, Perrin S, Saguez R, Decocq G (2010) Impact of Prunus serotina invasion on understory functional diversity in a European forest. Biol Invasions 12:1891–1907Google Scholar
  14. Chou CH, Leu LL (1992) Allelopathic substances and interactions of Delonix regia (BOJ) RAF. J Chem Ecol 18:2285–2303PubMedGoogle Scholar
  15. Cierjacks A, Kowarik I, Joshi J, Hempel S, Ristow M, von der Lippe M, Weber E (2013) Biological flora of the British isles: Robinia pseudoacacia. J Ecol 101:1323–1640Google Scholar
  16. Cornelissen JHC, Sibma F, Van Logtestijn RSP, Broekman RA, Thompson K (2011) Leaf pH as a plant trait: species-driven rather than soil-driven variation. Funct Ecol 25:449–455Google Scholar
  17. De Marco A, Arena C, Giordano M, Virzo De Santo A (2013) Impact of the invasive tree black locust on soil properties of Mediterranean stone pine-holm oak forests. Plant Soil 372:473–486Google Scholar
  18. Einhellig EA (2004) Mode of allelochemical action of phenolic compounds. In: Macías FA et al (eds) Allelopathy: chemistry and mode of action of allelochemicals. CRC Press, Florida, pp 217–238Google Scholar
  19. El-Alfy N, El-Gohary HMA, Sokkar NM, Hosny M, Al-Mahdy DA (2011) A new flavonoid C-glycoside from Celtis australis L. and Celtis occidentalis L. leaves and potential antioxidant and cytotoxic activities. Sci Pharm 79:963–975PubMedPubMedCentralGoogle Scholar
  20. Felle HH (2001) pH: signal and messenger in plant cells. Plant Biol. 3:577–591Google Scholar
  21. Fipps G (2003) Irrigation water quality standards and salinity management. Agri Life Extension, Texas A&M System, B-1667Google Scholar
  22. Fournier E (2001) Colorimetric quantification of carbohydrates. Curr Prot Food Anal Chem E1.1.1–E1.1.8Google Scholar
  23. Franck N, Vaast P, Génard M, Dauzat J (2006) Soluble sugars mediated sink feedback down-regulation of leaf photosynthesis in field-grown Coffea arabica. Tree Physiol 26:517–525PubMedGoogle Scholar
  24. Gleadow RM, Møller BL (2014) Cyanogenic glycosides: synthesis, physiology and phenotypic plasticity. Annu Rev Plant Biol 65:155–185PubMedGoogle Scholar
  25. Gniazdowska A, Krasuska U, Andrzejczak O, Soltys D (2015) Allelopathic compounds as oxidative stress agents: yes or no. In: Gupta KJ, Igamberdiev AU (eds) Reactive oxygen signaling and communication in plants. Signalling and communication in plants 23. Springer, New York, pp 155–176Google Scholar
  26. Godefroid S, Phartyal SS, Weyembergh G, Koedam N (2005) Ecological factors controlling the abundance of non-native invasive black cherry (Prunus serotina) in deciduous forest understory in Belgium. For Ecol Manag 210:91–105Google Scholar
  27. Haig T (2008) Allelochemicals in plants. In: Zeng RS, Mallik AU, Luo SM (eds) Allelopathy in sustainable agriculture and forestry. Springer, New York, pp 63–104Google Scholar
  28. Halarewicz A, Zolnierz L (2014) Changes in the understorey of mixed coniferous forest plant communities dominated by the American black cherry (Prunus serotina Ehrh.). For Ecol Manag 313:91–97Google Scholar
  29. Hammash D, Kitaz A, Sabbagh G (2016) Total phenolic content, flavonoid concentration and antioxidant activity of leaves and bark extracts of Celtis australis L. Int J Pharm Sci Nanotech 9:3188–3192Google Scholar
  30. Hardy RWF, Holsten RD, Jackson EK, Burns RC (1968) The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol 43:1185–1207PubMedPubMedCentralGoogle Scholar
  31. Jagodziński AM, Dyderski MK, Rawlik M, Banaszczak P (2015) Plantation of coniferous trees modifies risk and size of Padus serotina (Ehrh.) Borkh. invasion–Evidence from a Rogów Arboretum case study. Forest Ecol Manag 357:84–94Google Scholar
  32. Keresztesi B (1983) Breeding and cultivation of black locust, Robinia pseudoacacia. Hungary For Ecol Manag 6(3):217–244Google Scholar
  33. Kjeldahl J (1883) Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. [New method for the determination of nitrogen in organic substances.]. Zeitschrift für analytische Chemie 22(1):366–383Google Scholar
  34. Knipp M, Vašák M (2000) A colorimetric 96-well microtiter plate assay for determination of enzymatically formed citrulline. Anal Biochem 286:257–264PubMedGoogle Scholar
  35. Krykunets VM (1993) Acetylene reduction method in researches on physiology of legume-Rhizobium symbiosis. Physiol Biochem Cult Plants 25:419–430Google Scholar
  36. Li HH, Inove M, Nishimura H, Mizutani J, Tsuzuki E (1993) Interactions of trans-cinnamic acid, its related phenolic allelochemicals, and ascorbic acid in seedling growth and seed germination of lettuce. J Chem Ecol 19:1775–1787PubMedGoogle Scholar
  37. Li Z-H, Wang Q, Ruan X, Pan C-D, Jiang D-A (2010) Phenolics and plant allelopathy. Molecules 15:8933–8952PubMedPubMedCentralGoogle Scholar
  38. Lodhi MAK (1975) Allelopathic efects of hackberry in bottomland forest community. J Chem Ecol 1(2):171–182Google Scholar
  39. Lodhi MAK, Nickell GL (1973) Effects of leaf extracts of Celtis laevigata on growth, water content, and carbon dioxide exchange rates of three grass species. Bull Torrey Bot Club 100(3):159–165Google Scholar
  40. Lodhi MAK, Rice EL (1971) Allelopathic efects of Celtis laevigata. Bull Torrey Bot Club 98(2):83–89Google Scholar
  41. Lotina-Hennsen B, King-Diaz B, Aguilar MI, Hernandez Terrones MG (2006) Plant secondary metabolites. Targets and mechanisms of allelopathy. In: Reigosa MJ, Pedrol N, Gonzáles L (eds) Allelopathy: a physiological process with ecological implications. Springer, Dordrecht, pp 229–265Google Scholar
  42. Medvecká J, Kliment J, Májeková J, Halada Ľ, Zaliberová M, Gojdičová E, Feráková V, Jarolímek I (2012) Inventory of the alien flora of Slovakia. Preslia 84:257–309Google Scholar
  43. Mierziak J, Kosty K, Kulma A (2014) Flavonoids as important molecules of plant interactions with environment. Molecules 19:16240–16265PubMedPubMedCentralGoogle Scholar
  44. Mukherjee SP, Choudhuri MA (1983) Implications of water stress-induced changes in the level of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol Plant 58:166–170Google Scholar
  45. Nasir H, Iqbal Z, Hiradate S, Fujii Y (2005) Allelopathic potential of Robinia pseudoacacia L. J Chem Ecol 31(9):2179. CrossRefPubMedGoogle Scholar
  46. Olszewska M (2007) Quantitative HPLC analysis of flavonoids and chlorogenic acid in the leaves and inflorescence of Prunus serotina Ehrh. Acta Chrom 19:253–269Google Scholar
  47. Oravec M (2008) Production capability of robinia stands from the viewpoint of production of fuel dendromass. Forestry J 54(2):155–165Google Scholar
  48. Park YK, Koo MH, Ikegati M, Contado JL (1997) Comparison of the flavonoid aglycone contents of Apis mellifera propolis from various regions of Brazil. Arq Biol Tecnol 40:97–106Google Scholar
  49. Petrov VD, Van Breusegem F (2012) Hydrogen peroxide—a central hub for information flow in plant cells. AoB PLANTS. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Procházková S, Vårum KM, Østgaard K (1999) Quantitative determination of chitosans by ninhydrin. Carbohyd Polym 38:115–122Google Scholar
  51. Rédei K, Osváth-Bujtás Z, Veperdi I (2008) Black locust (Robinia pseudoacacia L.) improvement in Hungary: a review. Acta Silv Lign Hungary 4:127–132Google Scholar
  52. Robakowski P, Bielinis E, Stachowiak J, Mejza I, Bułaj B (2016) Seasonal changes affect root prunasin concentration in Prunus serotina and override species interactions between P. serotina and Quercus petraea. J Chem Ecol 42:202–214PubMedPubMedCentralGoogle Scholar
  53. Scheidemann P, Wetzel A (1997) Identification and characterization of flavonoids in the root exudate of Robinia pseudoacacia. Trees 11(5):316–321Google Scholar
  54. Serraj R, Vadez V, Denison RF, Sinclair TR (1999) Involvment of ureides in nitrogen fixation inhibition in soybean. Plant Physiol 119:289–296PubMedPubMedCentralGoogle Scholar
  55. Singh AK et al (2011) Characterization of Rhizobium isolated from root nodules of Trifolium alexandrinum. J Agric Tech 7(6):1705–1723Google Scholar
  56. Šiška B, Špánik F, Repa Š, Gálik M (2005) Practical bio-meteorology. [Praktická biometeorológia]. Slovenská poľnohospodárska univerzita, NitraGoogle Scholar
  57. Sitzia T, Campagnaro T, Dainese M, Cierjacks A (2012) Plant species diversity in alien black locust stands: a paired comparison with native stands across a north-Mediterranean range expansion. For Ecol Manag 285:85–91Google Scholar
  58. Slavík B (1965) Metody studia vodního provozu rostlin. [Methods in the Plant Relations Study.] Nakladatelství ČSAV, PrahaGoogle Scholar
  59. Sommavilla V, Haidacher-Gasser D, Sgarbossa M, Zodorn C (2012) Seasonal variation in phenolics in leaves of Celtis australis (Cannabaceae). Biochem Syst Ecol 41:110–114Google Scholar
  60. Sprent JI, Parsons R (2000) Nitrogen fixation in legume and non-legume trees. Field Crop Res 65(2–3):183–196Google Scholar
  61. Surleva A, Drochioiu G (2013) A modified ninhydrin micro-assay for determination of total cyanogens in plants. Food Chem 141:2788–2794PubMedGoogle Scholar
  62. Swain E, Poulton JE (1994) Utilization of amygdalin during seedling development of Prunus serotina. Plant Physiol 106:437–445PubMedPubMedCentralGoogle Scholar
  63. Tian C et al (2003) Effect of inoculation with ecto- and arbuscular mycorrhizae and Rhizobium on the growth and nitrogen fixation by black locust, Robinia pseudoacacia. New Forests 25(2):125–131Google Scholar
  64. Török K, Botta-Dukát Z, Dancza I, Németh I, Kiss J, Mihály B, Magyar D (2003) Invasion gateways and corridors in the Carpathian Basin: biological invasions in Hungary. Biol Invasions 5:349–356Google Scholar
  65. Ubalua AO (2010) Cyanogenic glycosides and the fate of cyanide in soil. AJCS 4:223–237Google Scholar
  66. ÚKZÚZ (2013) Spectrophotometric determination of tannins in sorghum. [Stanovení obsahu taninů v čiroku spektrofotometricky]. ÚKZÚZ, PrahaGoogle Scholar
  67. Vanhellemont M, Wauters L, Baeten L, Bijlsma R-J, De Frenne P, Hermy M, Verheyen K (2009) Prunus serotina unleasehed: invader dominance after 70 years of forest development. Invasions, Biol. CrossRefGoogle Scholar
  68. Vetter J (2000) Plant cynogenic glycosides. Toxicon 38:11–36PubMedGoogle Scholar
  69. Vítková M, Müllerová J, Sádlo J, Pergl J, Pyšek P (2017) Black locust (Robinia pseudoacacia) beloved and despised: a story of an invasive tree in Central Europe. For Ecol Manag 284:287–302Google Scholar
  70. Weston LA, Mathesius U (2013) Flavonoids: their structure, biosynthesis and role in the rhizosphere, including allelopathy. J Chem Ecol 39:283–297PubMedGoogle Scholar
  71. Zanardo DIL, Lima RB, Ferrarese ML, Burna GA, Ferrarese-Filho O (2009) Soybean root growth inhibition and lignification induced by p-coumaric acid. Env Exp Bot 66(1):25–30Google Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2019

Authors and Affiliations

  1. 1.Mlyňany Arboretum, Institute of Forest EcologySlovak Academy of SciencesSlepčanySlovakia
  2. 2.Department of Botany and Genetics, Faculty of Natural SciencesUniversity of Constantine the PhilosopherNitraSlovakia
  3. 3.National Botanical Garden, Institute of Ecology and Botany, Centre for Ecological ResearchHungarian Academy of SciencesVácrátótHungary
  4. 4.Department of Nitrogen Fixation, Institute of Plant Physiology and GeneticsNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations