Advertisement

Acta Physiologiae Plantarum

, 41:165 | Cite as

Vegetal regulators increase the quality of atemoya fruits and recover the photosynthetic metabolism of stressed plants

  • Tamara do Prado Verotti
  • Caroline Genari de Oliveira
  • Nathália de Souza Parreiras
  • Fabrício Custódio Moura Gonçalves
  • Carla Verônica CorrêaEmail author
  • Gisela Ferreira
  • Felipe Girotto Campos
  • Carmen Sílvia Fernandes Boaro
Original Article
  • 34 Downloads

Abstract

Vegetal regulators such as auxin, cytokinin, and gibberellin were applied in different concentrations, through commercial mix, to “Thompson” variety of atemoya fruits to verify the effect of the regulators in the quality of healthy plants of atemoya fruit and its influence in the gas exchange of the stressed plants. The study was conducted with two experiments: the first experiment consisted in the application of the mix of auxin, cytokinin, and gibberellin with concentrations of 0, 200, 300, 400, and 600 mL ha−1, during 14 days, for 5 months, in commercial orchard and in healthy plants. There were evaluated length, diameter, fresh mass of the peel, fresh mass of the pulp, and total fresh mass; fruits’ volume, soluble solids and pH of the pulp, and number and fresh mass of the seeds. In the second experiment, the application of the regulators’ mix in the concentrations that resulted in better quality of the fruits such as 300 and 400 mL ha−1 was conducted in stressed plants to evaluate the recovery of the photosynthetic metabolism and of the physical–chemical quality of the fruits. In this experiment, the control treatment (without application of the mix) was conducted in the plants with good visual conditions and highest numbers of greener leaves, smaller leaves and yellowish leaves. The gas exchanges were conducted every 14 days, and when the fruits ripened, they were harvested for the measurement of ascorbic acid, soluble sugars, reducing sugars, sucrose, and starch. The concentrations of the mix of auxin, cytokinin, and gibberellin such as 300 and 400 mL ha−1 improved the quality of the fruits and recovered the gas exchange of stressed plants without modifying the physical–chemical characteristics of its fruits, setting itself as an agricultural practice that is beneficial for the atemoya fruit cultivation.

Keywords

Auxin Cytokinin Gibberellin Gas exchange Post-harvest 

Notes

References

  1. Amaro ACE (2014) Respostas fisiológicas à aplicação de reguladores vegetais e nutrientes em videira ‘crimson seedless’. (Tese de Doutorado). Universidade Estadual Paulista (UNESP) Botucatu, BrasilGoogle Scholar
  2. Buchanan BB, Gruissem W, Jones RL (2015) Biochemistry & molecular biology of plants. American Society of plant Biologists, OxfordGoogle Scholar
  3. Chandler WJ, Werr W (2015) Cytokinin–auxin crosstalk in cell type specification. Trends Plant Sci.  https://doi.org/10.1016/j.tplants.2015.02.003 CrossRefPubMedGoogle Scholar
  4. Chatrou LW, Pirie MD, Erkens RHJ, Couvreur TLP, Neubig KM, Abbott JR, Mols JB, Mass JW, Saunders RMK, Chase MW (2012) A new subfamilial and tribal classification of the pantropical flowering plant family Annonaceae informed by molecular phylo genetics. Bot J Linn Soc 169:5.  https://doi.org/10.1111/j.1095-8339.2012.01235.x CrossRefGoogle Scholar
  5. Davies PJ (2004) Plant hormones and their roles in plant growth and development. Springer, New YorkGoogle Scholar
  6. Dorcey E, Urbez C, Blasquez MA, Carbonell J, Perez-Amador A (2009) Fertilization-dependent auxin response in ovules triggers fruit development through modulation of gibberellin metabolism in Arabidopsis. Plant J Oxford.  https://doi.org/10.1111/j.1365-313x.2008.03781.x CrossRefGoogle Scholar
  7. Fagan EB, Ono EO, Rodrigues JD, Chalfun Júnior A, Dourado Neto D (2015) Plant physiology: regulatory vegetables. São Paulo, BrasilGoogle Scholar
  8. Filho VJGM (2012) Uso de fitorreguladores no desenvolvimento de frutos na atemoieira (Annona cherimola x A. squamosa cv. Gefner). Rev Ceres.  https://doi.org/10.1590/S0034-737X2012000500009 CrossRefGoogle Scholar
  9. Garbelini RCBS (2009) Reguladores vegetais na emergência e no desenvolvimento de plantas de macadâmia (Macadamia integrifólia Maiden & Betche). Tese (doutorado Universidade Estadual Paulista, BrasilGoogle Scholar
  10. Genkov T, Tsoneva P, Ivanova I (1997) Effect of cytokinins on Photosynthetic pigments and chlorophyllase activity in vitro cultures of axillary buds of Dianthus caryophyllus L. J Plant G Regul.  https://doi.org/10.1007/PL00006992 CrossRefGoogle Scholar
  11. Instituto Brasileiro de Geografia e Estatística – IBGE 2015. Mapa dos Solos do Brasil. ftp://geoftp.ibge.gov.br/mapas_tematicos/mapas_murais/solos.pdf. Accessing 26 Apr 2015
  12. José ARS (2014) Atualidades e perspectivas das anonáceas no mundo. Rev Bras de Frut. Jaboticabal, Brasil 15:86–93.  https://doi.org/10.1590/S0100-29452014000500010 CrossRefGoogle Scholar
  13. Laca-Buendia JP (1989) Efeito de reguladores de crescimento no algodoeiro (Gossypium hirsutum L.). Rev Bras de Fis Veg: 109–113Google Scholar
  14. Larcher W (2006) Ecofisiologia Vegetal. São Carlos, BrasilGoogle Scholar
  15. Leite VM, Rosolem CA, Rodrigues JD (2003) Giberelina e citocinina no crescimento da soja. Sci Agric 60:537–541CrossRefGoogle Scholar
  16. Lemos EEP (2014) A produção de Anonáceas no Brasil. Rev Bras de Frutic. Jaboticabal, Brasil, pp 77–85Google Scholar
  17. Mantoan LPB, de Rolim LFA, Macedo AC, Ferreira G, Boaro CSF (2016) Photosynthetic adjustment after rehydration in Annona emarginata. Ac Phys Plant.  https://doi.org/10.1007/s11738-0162171-1 CrossRefGoogle Scholar
  18. Matsumoto K (2000) Giberelinas. Introdução aos hormônios vegetais. Brasilia, Embrapa Recursos Geneticos e Biotecnologia, pp 83–105Google Scholar
  19. Mota Filho VJG, Pereira MCT, Nietsche S, Guimarães JFR, Moreira GBR, Fernandes TP (2012) Uso de fitorreguladores no desenvolvimento de frutos na atemoieira (Annona cherimola x A. squamosa cv. Gefner). Rev Ceres.  https://doi.org/10.1590/S0034-737X2012000500009 CrossRefGoogle Scholar
  20. Nelson N (1944) A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 153(2):375–380Google Scholar
  21. Palliotti A (2001) Developmental changes in gas exchange activity in flowers, berries and trendils of field grown Cabernet Sauvignon. Am J Enol Vitic 52:317–323Google Scholar
  22. Paradikovic N, Vinkovic T, Vinkovic-Vrcek I, Zuntar I, Bojic M, Medic-Saric M (2011) Effect of natural biostimulants on yield and nutritional quality: an example of sweet yellow pepper (Capsicum annuum L.) plants. J Sc Food Agric.  https://doi.org/10.1002/jsfa.4431 CrossRefGoogle Scholar
  23. Pattison RJ, Csukasi F, Catalá C (2014) Mechanisms regulating auxin action during fruit development. Physiology Plant.  https://doi.org/10.1111/ppl.12142 CrossRefGoogle Scholar
  24. Pereira MCT, Santos RKA, Nietsche S, Mizobutsi GP, Santos EF (2014) Doses de ácido giberélico na frutificação efetiva e qualidade de frutos de atemoieira“Gefner”. Rev Bras de Frutic 36:184–191CrossRefGoogle Scholar
  25. Pérez-Jiménez M, Pazos-Navarro M, López-Marín J, Gálvez A, VaróP Amor FM (2015) Foliar application of plant growth regulators changes the nutrient composition of sweet pepper (Capsicum annuum L.). Sci Hortic.  https://doi.org/10.1016/j.scienta.2015.08.002 CrossRefGoogle Scholar
  26. Ramezani S, Shekafandeh A (2009) Roles of gibberellic acid and zinc sulphate in increasing size and weight of olive fruit. Afr J Biotechnol 6(791-6):794Google Scholar
  27. Ramos ANRP (2003) Qualidade de frutos de tomate “giuliana” tratados com produtos de efeitos fisiológicos. Semina C Agric.  https://doi.org/10.5433/1679-0359.2013v34n6supl1p3543 CrossRefGoogle Scholar
  28. Reig C, Mesejo C, Martínes-Funtes A, Martínez-Álcantara B, Agustí M (2015) Loquat fruit ripening is associated with root depletion. Nutritional and hormonal control. J Plant Phys 177:51–59CrossRefGoogle Scholar
  29. Santner A, Calderon-Villalobos LIA, Estelle M (2009) Plant hormones are versatile chemical regulators of plant growth. Nat Chem Bio.  https://doi.org/10.1016/j.jplph.2014 CrossRefGoogle Scholar
  30. Schaller GE (2015) The yin–yang of hormones: cytokinin and auxin interactions in plant development. Plant Cell.  https://doi.org/10.1105/tpc.114.133595 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Serrani JC, Sanjua’n R, Ruiz-rivero O, Fos M, García-Martínez JL (2007) Gibberellin regulation of fruit set growth in tomato. Plant Physiol 15:246–257.  https://doi.org/10.1104/pp.107.098335 CrossRefGoogle Scholar
  32. Sobrinho BR (2014) Produção integrada de anonáceas no Brasil. Rev Bras de Frutic :102–107Google Scholar
  33. Taiz L, Zeiger E (2013) Fisiologia vegetal. Porto Alegre, BrasilGoogle Scholar
  34. Yilmaz C, Ozguyen AI (2009) The effects of some plant nutrients, gibberellic acid and pinolene treatments on the yield, fruit quality and cracking in pomegranate. Ac Hortic.  https://doi.org/10.17660/ActaHortic.2009.818.30 CrossRefGoogle Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2019

Authors and Affiliations

  • Tamara do Prado Verotti
    • 1
  • Caroline Genari de Oliveira
    • 1
  • Nathália de Souza Parreiras
    • 1
  • Fabrício Custódio Moura Gonçalves
    • 1
  • Carla Verônica Corrêa
    • 2
    Email author
  • Gisela Ferreira
    • 1
  • Felipe Girotto Campos
    • 1
  • Carmen Sílvia Fernandes Boaro
    • 1
  1. 1.Departament of Botanic, São Paulo State UniversityBotucatuBrazil
  2. 2.Department of HorticultureSão Paulo State UniversityBotucatuBrazil

Personalised recommendations