Advertisement

Acta Physiologiae Plantarum

, 41:167 | Cite as

Chlorophyll a fluorescence analysis reveals divergent photosystem II responses to saline, alkaline and saline–alkaline stresses in the two Lotus japonicus model ecotypes MG20 and Gifu-129

  • César Daniel Bordenave
  • Rubén Rocco
  • Santiago Javier Maiale
  • Maria Paula Campestre
  • Oscar Adolfo Ruiz
  • Andrés Alberto Rodríguez
  • Ana Bernardina MenéndezEmail author
Original Article
  • 56 Downloads

Abstract

Saline and alkaline stresses affect more than 10% of the World’s arable land, limiting agricultural production. Salt-induced stress may affect the photosystem II (PSII) function, altering fluorescence emission. Therefore, changes in fluorescence are used to quantify and analyze abiotic stress responses in plants. So far, no study has focused on the response of PSII to saline, alkaline and saline–alkaline stresses in the model legume Lotus japonicus. For the saline, alkaline and saline–alkaline treatments, plants of the L. japonicus ecotypes MG20 and Gifu-129 were cultivated in sand with nutrient solution, added with NaCl and NaHCO3 in different proportions. Growth, gas exchange, and chlorophyll a fluorescence transient kinetic and OJIP parameters were measured, and chlorophyll a and b were determined. The analysis of the kinetic of chlorophyll a fluorescence showed that NaCl-derived stress sources affect the photochemical events in PSII in both ecotypes, being this effect more evident under higher pH condition, whereas alkalinity per se has a mild or no effect on these events. The saline–alkaline stress induced a more severe effect on Gifu B-129, compared with Miyakojima MG20, whereas NaCl improved primary photochemistry in MG20. Our results allow us to accept the hypothesis that both ecotypes deploy differential responses under the three stressful treatments and that the saline–alkaline stress causes higher damage levels than saline and alkaline stresses alone in relation with structures and sub-processes of the PSII.

Keywords

Alkalinity Chlorophyll a fluorescence Lotus japonicus OJIP transient Photosynthesis Salinity 

Notes

Acknowledgements

This work was supported by Grants from the Agencia Nacional de promoción Científica y Tecnológica/FONCyT PICTs 2034 and 1611, and the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina).

Supplementary material

11738_2019_2956_MOESM1_ESM.docx (30 kb)
Supplementary material 1 (DOCX 30 kb)
11738_2019_2956_MOESM2_ESM.docx (7 kb)
Supplementary material 2 (DOCX 7 kb)

References

  1. Acosta-Motos JR, Diaz-Vivancos P, Alvarez S, Fernández-García N, Sánchez-Blanco MJ, Hernández JA (2015a) NaCl-induced physiological and biochemical adaptative mechanisms in the ornamental Myrtus communis L plants. J Plant Physiol 183:41–51PubMedGoogle Scholar
  2. Acosta-Motos JR, Diaz-Vivancos P, Álvarez S, Fernández-García N, Sanchez-Blanco MJ, Hernández JA (2015b) Physiological and biochemical mechanisms of the ornamental Eugenia myrtifolia L plants for coping with NaCl stress and recovery. Planta 242:829–846PubMedGoogle Scholar
  3. Appenroth KJ, Stöckel J, Srivastava A, Strasser RJ (2001) Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurement. Environ Pollut 115:49–64PubMedGoogle Scholar
  4. Ashraf MHPJC, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190Google Scholar
  5. Babuin MF, Campestre MP, Rocco R, Bordenave CD, Escaray FJ, Antonelli C, Calzadilla P (2014) Response to long-term NaHCO3-derived alkalinity in model Lotus japonicus ecotypes Gifu B-129 and miyakojima MG-20: transcriptomic profiling and physiological characterization. PLoS ONE 9:e97106PubMedPubMedCentralGoogle Scholar
  6. Bordenave CD, Rocco R, Babuin MF, Campestre MP, Escaray FJ, Gárriz A, Antonelli C (2017) Characterization of the primary metabolome during the long-term response to NaHCO3-derived alkalinity in Lotus japonicus ecotypes Gifu B-129 and Miyakojima MG-20. Acta Physiol Plant 39:76Google Scholar
  7. Calatayud A, Barreno E (2001) Chlorophyll a fluorescence antioxidant enzymes and lipid peroxidation in tomato in response to ozone and benomyl. Environ Pollut 115:283–289PubMedGoogle Scholar
  8. Campestre MP, Antonelli C, Calzadilla PI, Maiale SJ, Rodríguez AA, Ruiz OA (2016) The alkaline tolerance in Lotus japonicus is associated with mechanisms of iron acquisition and modification of the architectural pattern of the root. J Plant Physiol 206:40–48PubMedGoogle Scholar
  9. Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot-London 103:551–560Google Scholar
  10. Chen S, Li J, Wang S, Hüttermann A, Altman A (2001) Salt nutrient uptake and transport and ABA of Populus euphratica a hybrid in response to increasing soil NaCl. Trees 15:186–194Google Scholar
  11. Clark RB (1982) Iron deficiency in plants grown in the Great Plains of the US. J Plant Nut 5:251–268Google Scholar
  12. Clark RB, Yusuf Y, Ross WM, Maranville JW (1982) Screening for sorghum genotypic differences to iron deficiency. J Plant Nut 5:587–604Google Scholar
  13. Demetriou G, Neonaki C, Navakoudis E, Kotzabasis K (2007) Salt stress impact on the molecular structure and function of the photosynthetic apparatus—the protective role of polyamines. BBA-Bioenergetics 1767:272–280PubMedGoogle Scholar
  14. Di Renzo JA, Casanoves F, Balzarini MG, González L, Tablada M, Robledo CW (2008) Infostat versión Grupo InfoStat FCA. Universidad Nacional de Córdoba, ArgentinaGoogle Scholar
  15. Duarte B, Santos D, Marques JC, Caçador I (2013) Ecophysiological adaptations of two halophytes to salt stress: photosynthesis PS II photochemistry and anti-oxidant feedback–implications for resilience in climate change. Plant Physiol Bioch 67:178–188Google Scholar
  16. Gazquez A, Maiale SJ, Rachoski MM, Vidal A, Ruiz OA, Menéndez AB, Rodríguez AA (2015) Physiological response of multiple contrasting rice (Oryza sativa L) cultivars to suboptimal temperatures. J Agron Crop Sci 201:117–127Google Scholar
  17. Gazquez A, Vilas JM, Lerner JEC, Maiale SJ, Calzadilla PI, Menéndez AB, Rodríguez AA (2018) Rice tolerance to suboptimal low temperatures relies on the maintenance of the photosynthetic capacity. Plant Physiol Bioch 127:537–552Google Scholar
  18. Goh CH, Ko SM, Koh S, Kim YJ, Bae HJ (2012) Photosynthesis and environments: photoinhibition and repair mechanisms in plants. J Plant Biol 55:93–101Google Scholar
  19. Goltsev VN, Kalaji HM, Paunov M, Bąba W, Horaczek T, Mojski J, Kociel H (2016) Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus. Russ J Plant Physiol 63:869–893Google Scholar
  20. Gómez-Bellot MJ, Nortes PA, Ortuño MF, Romero C, Fernandez-Garcia N, Sánchez-Blanco MJ (2015) Influence of arbuscular mycorrhizal fungi and treated wastewater on water relations and leaf structure alterations of viburnum tinus L plants during both saline and recovery periods. J Plant Physiol 188:96–105PubMedGoogle Scholar
  21. Gong B, Wena D, VandenLangenberg K, Wei M, Yanga F, Shi Q, Wanga X (2013) Comparative effects of NaCl and NaHCO3 stress on photosynthetic parameters, nutrient metabolism, and the antioxidant system in tomato leaves. Sci Hort 157:1–12Google Scholar
  22. Handberg K, Stougaard J (1992) Lotus japonicus an autogamous diploid legume species for classical and molecular genetics. Plant J 2:487–496Google Scholar
  23. Haupt-Herting S, Fock HP (2002) Oxygen exchange in relation to carbon assimilation in water-stressed leaves during photosynthesis. Ann Bot-London 89:851–859Google Scholar
  24. Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. In: Circular California agricultural experiment station, vol 347, 2nd ednGoogle Scholar
  25. Hong CY, Chao YY, Yang MY, Cho SC, Kao CH (2009) Na+ but not Cl or osmotic stress is involved in NaCl-induced expression of glutathione reductase in roots of rice seedlings. J Plant Physiol 166:1598–1606PubMedGoogle Scholar
  26. Jafarinia M, Shariati M (2012) Effects of salt stress on photosystem II of canola plant (Barassica napus L) probing by chlorophyll a fluorescence measurements. Iran J Sci Technol 36:71–76Google Scholar
  27. James RA, Rivelli AR, Munns R, von Caemmerer S (2002) Factors affecting CO2 assimilation leaf injury and growth in salt-stressed durum wheat. Funct Plant Biol 29:1393–1403Google Scholar
  28. Jia XM, Wang H, Svetla S, Zhu Y-F, Hu Y, Chen L, Zhao T, Wang YX (2019) Comparative physiological responses and adaptive strategies of apple Malus halliana to salt, alkali and saline-alkali stress. Sci Hortic 245:154–162Google Scholar
  29. Jiang HX, Chen LS, Zheng JG, Han S, Tang N, Smith BR (2008) Aluminum-induced effects on photosystem II photochemistry in citrus leaves assessed by the chlorophyll a fluorescence transient. Tree Physiol 28:1863–1871PubMedGoogle Scholar
  30. Kalaji HM, Bosa K, Kościelniak J, Żuk-Gołaszewska K (2011) Effects of salt stress on photosystem II efficiency and CO2 assimilation of two syrian barley landraces. Environ Exp Bot 73:64–72Google Scholar
  31. Krüger GH, Tsimilli-Michael M, Strasser RJ (1997) Light stress provokes plastic and elastic modifications in structure and function of photosystem II in camellia leaves. Physiol Plant 101:265–277Google Scholar
  32. Kukavica B, Morina F, Janjić N, Boroja M, Jovanović L, Veljović-Jovanović S (2013) Effects of mixed saline and alkaline stress on the morphology and anatomy of Pisum sativum L: the role of peroxidase and ascorbate oxidase in growth regulation. Arch Biol Sci 65:265–278Google Scholar
  33. Kumar A, Kumar A, Kumar P, Lata C, Kumar S (2018) Effect of individual and interactive alkalinity and salinity on physiological, biochemical and nutritional traits of marvel grass. Ind J Exp Biol 56:573–581Google Scholar
  34. Kyle DJ, Osmond CB, Arntzen CJ (eds) (1987) Photoinhibition, topics in photosynthesis, vol 9. Elsevier, Amsterdam, pp 289–307Google Scholar
  35. Läuchli A, Lüttge U (2002) Salinity: environment-plants-molecules. Kluwer Academic Publishers, Dordrecht, pp 229–248Google Scholar
  36. Li R, Shi F, Fukuda K (2010) Interactive effects of various salt and alkali stresses on growth organic solutes and cation accumulation in a halophyte Spartina alterniflora (Poaceae). Environ Exp Bot 68:66–74Google Scholar
  37. Li Z, Cong R, Yang Q, Zhou J (2017) Effects of saline-alkali stress on growth and osmotic adjustment substances in willow seedlings. Acta Ecol Sin 37:8511–8517Google Scholar
  38. Lichtenthaler FW (1987) Karl Freudenberg, Burckhardt Helferich, Hermann OL Fischer A centennial tribute. Carbohyd Res 164:1–22Google Scholar
  39. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, LondonGoogle Scholar
  40. Mathur S, Mehta P, Jajoo A (2013) Effects of dual stress (high salt and high temperature) on the photochemical efficiency of wheat leaves (Triticum aestivum). Physiol Mol Biol Plant 19:179–188Google Scholar
  41. Mehta P, Jajoo A, Mathur S, Bharti S (2010a) Chlorophyll a fluorescence study revealing effects of high salt stress on photosystem II in wheat leaves. Plant Physiol Biochem 48:16–20PubMedGoogle Scholar
  42. Mehta P, Allakhverdiev SI, Jajoo A (2010b) Characterization of photosystem II heterogeneity in response to high salt stress in wheat leaves (Triticum aestivum). Photosynth Res 105:249–255PubMedGoogle Scholar
  43. Melchiorre M, Quero GE, Parola R, Racca R, Trippi VS, Lascano R (2009) Physiological characterization of four model lotus diploid genotypes: L. japonicus (MG20 and Gifu) L. filicaulis and L. burttii under salt stress. Plant Sci 177:618–628Google Scholar
  44. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250Google Scholar
  45. Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663Google Scholar
  46. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681Google Scholar
  47. Pan X, Zhang D, Chen X, Li L, Mu G, Li L, Song W (2010) Sb uptake and photosynthesis of Zea mays growing in soil watered with Sb mine drainage: an OJIP chlorophyll fluorescence study. Pol J Environ Stud 19:981Google Scholar
  48. Papageorgiou G (1975) Chlorophyll fluorescence: an intrinsic probe of photosynthesis. In: Govindjee (ed) Bioenergetics of photosynthesis. Academic Press, pp 319–371Google Scholar
  49. Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxi Environ Saf 60:324–349Google Scholar
  50. Paz RC, Rocco RA, Reinoso H, Menéndez AB, Pieckenstain FL, Ruiz OA (2012) Comparative study of alkaline saline and mixed saline–alkaline stresses with regard to their effects on growth nutrient accumulation and root morphology of Lotus tenuis. J Plant Growth Regul 31:448–459Google Scholar
  51. Paz RC, Reinoso H, Espasandin FD, González Antivilo FA, Sansberro PA, Rocco RA, Ruiz OA (2014) Akaline saline and mixed saline–alkaline stresses induce physiological and morpho-anatomical changes in Lotus tenuis shoots. Plant Biol 16:1042–1049PubMedGoogle Scholar
  52. Pietrini F, Chaudhuri D, Thapliyal AP, Massacci A (2005) Analysis of chlorophyll fluorescence transients in mandarin leaves during a photo-oxidative cold shock and recovery. Agr Ecosyst Environ 106:189–198Google Scholar
  53. Sanchez DH, Lippold F, Redestig H, Hannah MA, Erban A, Krämer U, Kopka J (2008) Integrative functional genomics of salt acclimatization in the model legume Lotus japonicus. Plant J 53:973–987PubMedGoogle Scholar
  54. Sanchez DH, Szymanski J, Erban A, Udvardi MK, Kopka J (2010) Mining for robust transcriptional and metabolic responses to long-term salt stress: a case study on the model legume Lotus japonicus. Plant Cell Environ 33:468–480PubMedGoogle Scholar
  55. Sanchez DH, Pieckenstain FL, Szymanski J, Erban A, Bromke M, Hannah MA, Kraemer U (2011) Comparative functional genomics of salt stress in related model and cultivated plants identifies and overcomes limitations to translational genomics. PLoS One 6:e17094PubMedPubMedCentralGoogle Scholar
  56. Sanchez DH, Schwabe F, Erban A, Udvardi MK, Kopka J (2012) Comparative metabolomics of drought acclimation in model and forage legumes. Plant Cell Environ 35:136–149PubMedGoogle Scholar
  57. Sato S, Tabata S (2006) Lotus japonicus as a platform for legume research. Curr Opin Plant Biol 9:128–132PubMedGoogle Scholar
  58. Sayed OH (1998) Analysis of photosynthetic responses and adaptation to nitrogen starvation in Chlorella using in vivo chlorophyll fluorescence. Photosynthetica 35:611–619Google Scholar
  59. Schreiber UBWN, Bilger W, Neubauer C (1995) Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. Ecophysiology of photosynthesis. Springer, Berlin, Heidelberg, pp 49–70Google Scholar
  60. Shi D, Sheng Y (2005a) Effect of various salt–alkaline mixed stress conditions on sunflower seedlings and analysis of their stress factors. Environ Exp Bot 54:8–21Google Scholar
  61. Shi D, Wang D (2005b) Effects of various salt-alkaline mixed stresses on Aneurolepidium chinense (Trin) Kitag. Plant Soil 271:15–26Google Scholar
  62. Shi D, Yin L (1993) Difference between salt (NaCl) and alkaline (Na2CO3) stresses on Puccinellia tenuiflora (Griseb.) Scribn et Merr Plants. Acta Bot Sin 3:144–149Google Scholar
  63. Strasser RJ, Govindjee (1992) On the O-J-I-P fluorescence transients in leaves and Dl mutants of Chlamydomonas reinhardtii. In: Murata N (ed) Research in photosynthesis, vol II, pp 29–32. Kluwer Academic, DordrechtGoogle Scholar
  64. Strasser BJ, Strasser RJ (1995) Measuring fast fluorescence transients to address environmental questions: the JIP-Test. In: Mathis P (ed) Photosynthesis: from light to biosphere. KAP Press, Dordrecht, pp 977–980.  https://doi.org/10.1007/978-94-009-0173-5_1142 Google Scholar
  65. Strasser RJ, Srivastava A, Govindjee G (1995) Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem Photobiol 61:32–42Google Scholar
  66. Strasser RJ, Srivastava A, Tsimilli-Michael M (1999) Screening the vitality and photosynthetic activity of plants by fluorescence transient. In: Behl RK, Punia MS, Lather BPS (eds) Crop improvement for food security. SSARM, Hisar, pp 72–115Google Scholar
  67. Strasser RJ, Srivastava A, Tsimilli-Michael M (2000) The fluorescence transient as a tool to characterise and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P (eds) Probing photosynthesis: mechanisms, regulation and adaptation. Taylor and Francis, London, New York, pp 445–483Google Scholar
  68. Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll a fluorescence transient. Chlorophyll a fluorescence. Springer, Dordrecht, pp 321–362Google Scholar
  69. Strauss AJ, Krüger GHJ, Strasser RJ, Van Heerden PDR (2006) Ranking of dark chilling tolerance in soybean genotypes probed by the chlorophyll a fluorescence transient OJIP. Environ Exp Bot 56:147–157Google Scholar
  70. Tang C, Turner NC (1999) The influence of alkalinity and water stress on the stomatal conductance photosynthetic rate and growth of Lupinus angustifolius L and Lupinus pilosus. Aust J Exp Agr 39:457–464Google Scholar
  71. Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot-London 91:503–527Google Scholar
  72. Tsai YC, Hong CY, Liu LF, Kao CH (2004) Relative importance of Na+ and Cl in NaCl induced antioxidant systems in roots of rice seedlings. Physiol Plant 122:86–94Google Scholar
  73. Tsimilli-Michael M, Strasser RJ (2008) In vivo assessment of plants’ vitality: applications in detecting and evaluating the impact of mycorrhization on host plants. In: Varma A (ed) Mycorrhiza. Springer, Berlin, Heidelberg, pp 679–703Google Scholar
  74. Vu TS, Zhang D, Xiao W, Chi C, Xing Y (2015) Mechanisms of combined effects of salt and alkaline stresses on seed germination and seedlings of Melilotus officinales (Fabaceae) in Northeast of China. Pak J Bot 47:1603–1611Google Scholar
  75. Wang G, Chen L, Hao Z, Li X, Liu Y (2011) Effects of salinity stress on the photosynthesis of Wolffia arrhiza as probed by the OJIP test. Fresenius Environ Bull 20:432–438Google Scholar
  76. Wen X, Qiu N, Lu Q, Lu C (2005) Enhanced thermotolerance of photosystem II in salt-adapted plants of the halophyte Artemisia anethifolia. Planta 220:486–497PubMedGoogle Scholar
  77. Xia J, Li Y, Zou D (2004) Effects of salinity stress on PSII in Ulva lactuca as probed by chlorophyll fluorescence measurements. Aquat Bot 80:129–137Google Scholar
  78. Xiang L, Hu L, Xu W, Zhen A, Zhang L, Hu X (2016) Exogenous γ-aminobutyric acid improves the structure and function of photosystem II in muskmelon seedlings exposed to salinity-alkalinity stress. PLoS One 11:e0164847PubMedPubMedCentralGoogle Scholar
  79. Yamane K, Kawasaki M, Taniguchi M, Miyake H (2008) Correlation between chloroplast ultrastructure and chlorophyll fluorescence characteristics in the leaves of rice (Oryza sativa L.) grown under salinity. Plant Prod Sci 11:139–145Google Scholar
  80. Yang C, Chong J, Li C, Kim C, Shi D, Wang D (2007) Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions. Plant Soil 294:263–276Google Scholar
  81. Yang CW, Jianaer A, Li CY, Shi DC, Wang DL (2008) Comparison of the effects of salt-stress and alkali-stress on photosynthesis and energy storage of an alkali-resistant halophyte Chloris virgata. Photosynthetica 46:273–278Google Scholar
  82. Yang CW, Xu HH, Wang LL, Liu J, Shi DC, Wang DL (2009) Comparative effects of salt-stress and alkali-stress on the growth, photosynthesis, solute accumulation, and ion balance of barley plants. Photosynthetica 47:79–86Google Scholar
  83. Yeo A (1998) Molecular biology of salt tolerance in the context of whole-plant physiology. J Exp Bot 49(323):915–929Google Scholar
  84. Zushi K, Matsuzoe N (2017) Using of chlorophyll a fluorescence OJIP transients for sensing salt stress in the leaves and fruits of tomato. Sci Hort 219:216–221Google Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2019

Authors and Affiliations

  • César Daniel Bordenave
    • 1
  • Rubén Rocco
    • 1
  • Santiago Javier Maiale
    • 1
  • Maria Paula Campestre
    • 1
  • Oscar Adolfo Ruiz
    • 1
  • Andrés Alberto Rodríguez
    • 1
  • Ana Bernardina Menéndez
    • 2
    Email author
  1. 1.Instituto Tecnológico de Chascomús, Consejo Nacional de Investigaciones Científicas y TécnicasUniversidad Nacional de General San Martín (INTECH-CONICET-UNSAM)ChascomúsArgentina
  2. 2.Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Instituto de Micología y Botánica (INMIBO-CONICET)Universidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations