Advertisement

Acta Physiologiae Plantarum

, 41:159 | Cite as

Sensitivity and biochemical mechanisms of sunflower genotypes exposed to saline and water stress

  • Cibelley Vanúcia Santana Dantas Barros
  • Yuri Lima Melo
  • Matheus de Freitas SouzaEmail author
  • Daniel Valadão Silva
  • Cristiane Elizabeth Costa de Macedo
Original Article
  • 38 Downloads

Abstract

Crops tolerant to salt and drought stress are an excellent alternative for producers in semi-arid regions. However, it is necessary to select the crops more tolerant and understand their involved mechanisms. We evaluated the effects of salinity and drought on growth, water status, membrane integrity, as well the behavior of organic and inorganic solutes in sunflower genotypes. Greenhouse experiments were performed to evaluate the tolerance of sunflower genotypes (Catissol 01 and Helio 253) to the salt and drought stress. The salt and drought stress were simulated by sodium chloride (NaCl) and polyethylene glycol (PEG 6000), respectively. The treatments with NaCl and PEG 6000 induced adverse changes on the growth, water status and cell membranes of the sunflower plants. Sunflower genotypes are more sensitive to water deficit due to the higher osmotic imbalance. The presence of saline ions minimized damages in sunflowers genotypes caused by lower water potential. The Catissol 01 genotype accumulated Na+ in the stem and roots avoiding translocation to the leaves. Helio 253 showed higher tolerance to the salt and drought stress than Catissol 01. Salinity and drought caused alterations on the carbohydrates and nitrogen compounds of the two sunflower genotypes. Soluble sugars, soluble proteins, free amino acids, and proline participate differently in the osmotic adjustment of the genotypes. The accumulation of soluble sugars, soluble proteins, and proline in the leaves is a mechanism that increases the tolerance to the salt and drought stress in the Helio 253 genotype.

Keywords

Helianthus annuus L. Membrane damage Osmoregulators mechanisms 

Abbreviations

RL

The root length

FLM

Fresh leaf matter

FSM

Fresh stem matter

FRM

Fresh root matter

LA

Leaf area

LAR

Leaf area ratio

TSS

Total soluble sugars

TSP

Total soluble proteins

TPS

Total soluble proteins

BSA

Bovine albumin

TAA

Total amino acids

TAA

Total free amino acid concentration

PRO

Proline

Notes

Acknowledgements

To “Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)” and “Coordenação de Aperfeiçoamento e Pessoal de Nível Superior (CAPES), Finance Code 001” for financial support.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interest.

References

  1. Avramović JM, Veličković AV, Stamenković OS, Rajković KM, Milić PS, Veljković VB (2015) Optimization of sunflower oil ethanolysis catalyzed by calcium oxide: RSM versus ANN-GA. Energy Convers Manage 105:1149–1156.  https://doi.org/10.1016/j.enconman.2015.08.072 CrossRefGoogle Scholar
  2. Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207CrossRefGoogle Scholar
  3. Beyene Y, Semagn K, Crossa J, Mugo S, Atlin GN, Tarekegne A, Alvarado G (2016) Improving maize grain yield under drought stress and non-stress environments in sub-Saharan Africa using marker-assisted recurrent selection. Crop Sci 56:344–353.  https://doi.org/10.2135/cropsci2015.02.0135 CrossRefGoogle Scholar
  4. Bhaskara GB, Yang TH, Verslues PE (2015) Dynamic proline metabolism: importance and regulation in water limited environments. Front Plant Sci 6:484.  https://doi.org/10.3389/fpls.2015.00484 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Blum A (2017) Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell Environ 40:4–10.  https://doi.org/10.1111/pce.12800 CrossRefPubMedGoogle Scholar
  6. Blum A, Ebercon A (1981) Cell membrane stability as a measure of drought and heat tolerance in wheat1. Crop Sci 21:43–47CrossRefGoogle Scholar
  7. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  8. Chai Q, Gan Y, Zhao C, Xu HL, Waskom RM, Niu Y, Siddique KH (2016) Regulated deficit irrigation for crop production under drought stress. A review. Agron Sustain Dev 36:3.  https://doi.org/10.1007/s13593-015-0338-6 CrossRefGoogle Scholar
  9. Cunha APM, Alvalá RC, Nobre CA, Carvalho MA (2015) Monitoring vegetative drought dynamics in the Brazilian semiarid region. Agric For Meteorol 214:494–505.  https://doi.org/10.1016/j.agrformet.2015.09.010 CrossRefGoogle Scholar
  10. da Silva EN, Silveira JAG, Rodrigues CF, de Lima CS, Viégas RA (2010) Contribuição de solutos orgânicos e inorgânicos no ajustamento osmótico de pinhão-manso submetido à salinidade. Pesquisa Agropecuária Brasileira 44:437–445CrossRefGoogle Scholar
  11. de Carvalho LM, de Oliveira IR, de Carvalho HWL, Carvalho C, Lira M, de Oliveira TRA (2015) Comportamento de cultivares de girassol em consorciação com o feijoeiro comum no agreste de Sergipe. Embrapa Tabuleiros Costeiros-Boletim de Pesquisa e Desenvolvimento (INFOTECA-E). https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/1023630/1/BP91.pdf Accessed 15 April 2019
  12. Díaz-López L, Gimeno V, Lidón V, Simón I, Martínez V, García-Sánchez F (2012) The tolerance of Jatropha curcas seedlings to NaCl: an ecophysiological analysis. Plant Physiol Biochem 54:34–42.  https://doi.org/10.1016/j.plaphy.2012.02.005 CrossRefPubMedGoogle Scholar
  13. Dubois M, Gilles KA, Hamilton JK, Rebers PT, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356CrossRefGoogle Scholar
  14. Enrique G, Olmo M, Poorter H, Ubera JL, Villar R (2016) Leaf mass per area (LMA) and its relationship with leaf structure and anatomy in 34 Mediterranean woody species along a water availability gradient. PLoS One 11:e0148788.  https://doi.org/10.1371/journal.pone.0148788 CrossRefGoogle Scholar
  15. Feki K, Quintero FJ, Khoudi H, Leidi EO, Masmoudi K, Pardo JM, Brini F (2014) A constitutively active form of a durum wheat Na+/H+ antiporter SOS1 confers high salt tolerance to transgenic Arabidopsis. Plant Cell Rep 33:277–288.  https://doi.org/10.1007/s00299-013-1528-9 CrossRefPubMedGoogle Scholar
  16. Figueiredo JRM, de Oliveira Paiva PD, dos Reis MV, Nery FC, de Menezes Campos S, da Silva DPC, Paiva R (2017) Development changes in calla lily plants due to salt stress. Acta Physiol Plant 39:147.  https://doi.org/10.1007/s11738-017-2446-1 CrossRefGoogle Scholar
  17. Ghobadi M, Taherabadi S, Ghobadi ME, Mohammadi GR, Jalali-Honarmand S (2013) Antioxidant capacity, photosynthetic characteristics and water relations of sunflower (Helianthus annuus L.) cultivars in response to drought stress. Ind Crops Prod 50:29–38.  https://doi.org/10.1016/j.indcrop.2013.07.009 CrossRefGoogle Scholar
  18. Gilbert ME, Medina V (2016) Drought adaptation mechanisms should guide experimental design. Trends Plant Sci 21:639–647.  https://doi.org/10.1016/j.tplants.2016.03.003 CrossRefPubMedGoogle Scholar
  19. Govrin R, Schlesinger I, Tcherner S, Sivan U (2017) Regulation of surface charge by biological osmolytes. J Am Chem Soc 139:15013–15021.  https://doi.org/10.1021/jacs.7b07036 CrossRefPubMedGoogle Scholar
  20. Gray SB, Dermody O, Klein SP, Locke AM, Mcgrath JM, Paul RE, Ainsworth EA (2016) Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean. Nature Plants 2:16132.  https://doi.org/10.1038/NPLANTS.2016.132 CrossRefPubMedGoogle Scholar
  21. Hamamoto S, Horie T, Hauser F, Deinlein U, Schroeder JI, Uozumi N (2015) HKT transporters mediate salt stress resistance in plants: from structure and function to the field. Curr Opin Biotechnol 32:113–120.  https://doi.org/10.1016/j.copbio.2014.11.025 CrossRefPubMedGoogle Scholar
  22. Hoagland, Arnon DI (1950) The water culture method for growing plants without soils. California Agricultural Experimental Station, Berkeley, p 347Google Scholar
  23. Khaliq A, Zia-ul-Haq M, Ali F, Aslam F, Matloob A, Navab A, Hussain S (2015) Salinity tolerance in wheat cultivars is related to enhanced activities of enzymatic antioxidants and reduced lipid peroxidation. Clean–Soil Air Water 43:1248–1258.  https://doi.org/10.1002/clen.201400854 CrossRefGoogle Scholar
  24. Kunert KJ, Vorster BJ, Fenta BA, Kibido T, Dionisio G, Foyer CH (2016) Drought stress responses in soybean roots and nodules. Front Plant Sci 7:1015.  https://doi.org/10.3389/fpls.2016.01015 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kurepin LV, Ivanov AG, Zaman M, Pharis RP, Allakhverdiev SI, Hurry V, Hüner NP (2015) Stress-related hormones and glycinebetaine interplay in protection of photosynthesis under abiotic stress conditions. Photosynth Res 126:221–235.  https://doi.org/10.1007/s11120-015-0125-x CrossRefPubMedGoogle Scholar
  26. Kuromori T, Mizoi J, Umezawa T, Yamaguchi-Shinozaki K, Shinozaki K (2015) Stress signaling networks: drought stress. Mol Biol 4:1–23.  https://doi.org/10.1007/2F978-1-4939-0263-7_7-1 CrossRefGoogle Scholar
  27. Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global crop production. Nature 529(7584):84.  https://doi.org/10.1038/nature16467 CrossRefPubMedGoogle Scholar
  28. Liu P, Yin L, Wang S, Zhang M, Deng X, Zhang S, Tanaka K (2015) Enhanced root hydraulic conductance by aquaporin regulation accounts for silicon alleviated salt-induced osmotic stress in Sorghum bicolor L. Environ Exp Bot 111:42–51.  https://doi.org/10.1016/j.envexpbot.2014.10.006 CrossRefGoogle Scholar
  29. Martínez-Vilalta J, Garcia-Forner N (2017) Water potential regulation, stomatal behaviour and hydraulic transport under drought: deconstructing the iso/anisohydric concept. Plant Cell Environ 40:962–976.  https://doi.org/10.1111/pce.12846 CrossRefPubMedGoogle Scholar
  30. Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A, Singh HB (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci 8:172.  https://doi.org/10.3389/fpls.2017.00172 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Melo YL, Danta CV, Lima-Melo Y, Maia JM, Macedo CEC (2017) Changes in osmotic and ionic indicators in Ananas comosus (L.) MD gold pre-treated with phytohormones and submitted to saline medium. Revista Brasileira de Fruticultura 39:(e-155).  https://doi.org/10.1590/0100-29452017155
  32. Mickelbart MV, Hasegawa PM, Bailey-Serres J (2015) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet 16:237.  https://doi.org/10.1038/nrg3901 CrossRefPubMedGoogle Scholar
  33. Monteiro JG, Cruz FJR, Nardin MB, dos Santos DMM (2014) Crescimento e conteúdo de prolina em plântulas de guandu submetidas a estresse osmótico e à putrescina exógena. Pesquisa Agropecuária Brasileira 49:18–25.  https://doi.org/10.1590/S0100-204X2014000100003 CrossRefGoogle Scholar
  34. Munns R, Gilliham M (2015) Salinity tolerance of crops–what is the cost? New Phytol 208:668–673.  https://doi.org/10.1111/nph.13519 CrossRefPubMedGoogle Scholar
  35. Niinemets Ü (2001) Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology 82:453–469.  https://doi.org/10.1890/0012-9658(2001)082%5b0453:gsccol%5d2.0.co;2 CrossRefGoogle Scholar
  36. Ning JF, Cui LH, Yang SH, Ai SY, Li MJ, Sun LL, Zeng ZB (2015) Basil ionic responses to seawater stress and the identification of gland salt secretion. J Anim Plant Sci 25:131–138Google Scholar
  37. Osakabe Y, Osakabe K, Shinozaki K, Tran LSP (2014) Response of plants to water stress. Front Plant Sci 5:86.  https://doi.org/10.3389/fpls.2014.00086 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Peoples MB, Faizah AW, Reakasem B, Herridge DF (1989) Methods for evaluating nitrogen fixation by nodulated legumes in the field. Australian Center for International Agricultural Research, Canberra, p 76Google Scholar
  39. Rahdari P, Hoseini SM (2012) Drought stress: a review. Int J Agron Plant Prod 3:443–446Google Scholar
  40. Rahman A, Nahar K, Hasanuzzaman M, Fujita M (2016) Calcium supplementation improves Na+/K+ ratio, antioxidant defense and glyoxalase systems in salt-stressed rice seedlings. Front Plant Sci 7:609.  https://doi.org/10.3389/fpls.2016.00609 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Ren B, Wang M, Chen Y, Sun G, Li Y, Shen Q, Guo S (2015) Water absorption is affected by the nitrogen supply to rice plants. Plant Soil 396:397–410.  https://doi.org/10.1007/s11104-015-2603-5 CrossRefGoogle Scholar
  42. Roy SJ, Negrão S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124.  https://doi.org/10.1016/j.copbio.2013.12.004 CrossRefPubMedGoogle Scholar
  43. Shanker AK, Maheswari M, Yadav SK, Desai S, Bhanu D, Attal NB, Venkateswarlu B (2014) Drought stress responses in crops. Funct Integr Genomics 14:11–22.  https://doi.org/10.1007/s10142-013-0356-x CrossRefPubMedGoogle Scholar
  44. Slavick B (1974) Methods of studying plant water relations. Springet Verlong, New York, p 449CrossRefGoogle Scholar
  45. Thalmann M, Pazmino D, Seung D, Horrer D, Nigro A, Meier T, Santelia D (2016) Regulation of leaf starch degradation by abscisic acid is important for osmotic stress tolerance in plants. Plant Cell 28:1860–1878.  https://doi.org/10.1105/tpc.16.00143 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Vieira RD, Carvalho NM (1994) Testes de vigor de sementes. Fundação de apoia a pesquisa, ensino e extensão-FUNEP, Jaboticabal, p 164Google Scholar
  47. Vilvert E, Lana M, Zander P, Sieber S (2018) Multi-model approach for assessing the sunflower food value chain in Tanzania. Agric Syst 159:103–110.  https://doi.org/10.1016/j.agsy.2017.10.014 CrossRefGoogle Scholar
  48. Volkov V (2015) Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes. Front Plant Sci 6:873.  https://doi.org/10.3389/fpls.2015.00873 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Weisany W, Sohrabi Y, Heidari G, Siosemardeh A, Badakhshan H (2014) Effects of zinc application on growth, absorption and distribution of mineral nutrients under salinity stress in soybean (Glycine max L.). J Plant Nutr 37:2255–2269.  https://doi.org/10.1080/01904167.2014.920386 CrossRefGoogle Scholar
  50. Yoshida T, Mogami J, Yamaguchi-Shinozaki K (2014) ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr Opin Plant Biol 21:133–139.  https://doi.org/10.1016/j.pbi.2014.07.009 CrossRefPubMedGoogle Scholar
  51. Zandalinas SI, Mittler R, Balfagón D, Arbona V, Gómez-Cadenas A (2018) Plant adaptations to the combination of drought and high temperatures. Physiol Plant 162:2–12.  https://doi.org/10.1111/ppl.12540 CrossRefPubMedGoogle Scholar
  52. Zonta JH, Brandao ZN, Rodrigues JS, Sofiatti V (2017) Cotton response to water deficits at different growth stages. Revista Caatinga 30:980–990.  https://doi.org/10.1590/1983-21252017v30n419rc CrossRefGoogle Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2019

Authors and Affiliations

  • Cibelley Vanúcia Santana Dantas Barros
    • 1
  • Yuri Lima Melo
    • 2
  • Matheus de Freitas Souza
    • 1
    Email author
  • Daniel Valadão Silva
    • 1
  • Cristiane Elizabeth Costa de Macedo
    • 3
  1. 1.Department of Crop ProductionUniversidade Rural do Semi-ÁridoMossoróBrazil
  2. 2.Department of Crop ProductionUniversidade Estadual da ParaíbaCampina GrandeBrazil
  3. 3.Department of Crop ProductionUniversidade Federal do Rio Grande do NorteNatalBrazil

Personalised recommendations