Advertisement

Use of fluorescent reporter genes in olive (Olea europaea L.) transformation

  • Sergio Cerezo
  • Elena Palomo-RíosEmail author
  • Sinda Ben Mariem
  • José A. Mercado
  • Fernando Pliego-Alfaro
Original Article
  • 15 Downloads

Abstract

Fluorescent proteins (FPs) can be used for different purposes in plant transformation studies such as the evaluation and improvement of transformation parameters or the isolation of transgenic cells in the absence of selective agents. In this research, the applicability of green (GFP) and red (DsRed) fluorescent proteins in olive transformation has been investigated. Olive embryogenic callus was transformed with Agrobacterium tumefaciens AGL1 strain carrying pXK7FNF2 (harbouring the gfp gene), pXK7RNR2 (DsRed), or pXK7S*NF2 (gfp and β-glucuronidase) binary plasmids. After 3 months of selection in the presence of paromomycin, several resistant calli were recovered for each construct, obtaining transformation rates in the range of 2–8%. The expression of FPs was studied during the different stages of olive plant regeneration using epi-fluorescence and confocal laser scanning microscopy. GFP from pXK7SN*F2 plasmid could be easily detected in olive somatic embryos (SE) during proliferation whereas SE transformed with pXK7FNF2 showed weak GFP signal. After embryo conversion, plants transformed with both vectors were analysed, but GFP could be detected neither in leaves nor in roots. By contrast, DsRed was highly expressed in SE and could also be visualized in leaf and root tissues of regenerated plants using confocal laser microscopy and epi-fluorescence zoom microscope, respectively. In addition, pXK7RNR2 was used to transform a different olive embryogenic line, detecting DsRed expression in SE transformed from this genotype. These results show that FPs can be a useful tool in genetic transformation of olive embryogenic cells, being DsRed gene more useful than gfp for this purpose.

Keywords

Genetic transformation Somatic embryogenesis Fluorescent proteins Reporter genes Gfp DsRed 

Notes

Acknowledgements

This research was supported by Grant P11-AGR-7992, Consejería de Economía y Conocimiento, Junta de Andalucía, Spain. Sinda Ben Mariem had a fellowship from Instituto Agronómico Mediterráneo de Zaragoza, Spain.

References

  1. Álvarez R, Alonso P, Cortizo M, Celestino C, Hernández I, Toribio M, Ordás RJ (2004) Genetic transformation of selected mature cork oak (Quercus suber L.) trees. Plant Cell Rep 23:218–223CrossRefGoogle Scholar
  2. Bevis BJ, Glick BS (2002) Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed). Nat Biotechnol 20(1):83–87.  https://doi.org/10.1038/nbt0102-83 CrossRefPubMedGoogle Scholar
  3. Bhaskar PB, Venkateshwaran M, Wu L, Ané J-M, Jiang J (2009) Agrobacterium-mediated transient gene expression and silencing: a rapid tool for functional gene assay in potato. PLoS One 4(6):e5812.  https://doi.org/10.1371/journal.pone.0005812 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Buenrostro-Nava M, Ling P (2006) Comparative analysis of 35S and lectin promoters in transgenic soybean tissue using an automated image acquisition system and image analysis. Plant Cell Rep 25:920–926CrossRefGoogle Scholar
  5. Cañas L, Benbadis A (1988) In vitro plant regeneration from cotyledon fragments of the olive tree (Olea europaea L.). Plant Sci 54:65–74CrossRefGoogle Scholar
  6. Cerezo S, Mercado JA, Pliego-Alfaro F (2011) An efficient regeneration system via somatic embryogenesis in olive. Plant Cell Tissue Organ Cult 106(2):337–344.  https://doi.org/10.1007/s11240-011-9926-6 CrossRefGoogle Scholar
  7. Clavero-Ramírez I, Pliego-Alfaro F (1990) Germinación in vitro de embriones maduros de olivo (Olea europaea). Actas de Horticultura 1:512–516Google Scholar
  8. Corredoira E, Valladares S, Allona I, Aragoncillo C, Vieitez AM, Ballester A (2012) Genetic transformation of European chestnut somatic embryos with a native thaumatin-like protein (CsTL1) gene isolated from Castanea sativa seeds. Tree Physiol 32:1389–1402CrossRefGoogle Scholar
  9. Duque AS, de Sousa Araújo S, Cordeiro MA, Santos DM, Fevereiro MP (2007) Use of fused gfp and gus reporters for the recovery of transformed Medicago truncatula somatic embryos without selective pressure. Plant Cell Tissue Organ Cult 90(3):325–330CrossRefGoogle Scholar
  10. Grebenok R, Lambert G (1997) Characterization of the targeted nuclear accumulation of GFP within the cells of transgenic plants. Plant J 12:685–696CrossRefGoogle Scholar
  11. Hofgen R, Willmitzer L (1988) Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res 16(20):9877–9877.  https://doi.org/10.1093/nar/16.20.9877 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hraška M, Rakouský S, Čurn V (2006) Green fluorescent protein as a vital marker for non-destructive detection of transformation events in transgenic plants. Plant Cell Tissue Organ Cult 86(3):303–318.  https://doi.org/10.1007/s11240-006-9131-1 CrossRefGoogle Scholar
  13. Jach G, Binot E, Frings S, Luxa K, Schell J (2001) Use of red fluorescent protein from Discosoma sp. (dsRED) as a reporter for plant gene expression. Plant J 28(4):483–491.  https://doi.org/10.1046/j.1365-313X.2001.01153.x CrossRefPubMedGoogle Scholar
  14. Jin S, Liu G, Zhu H, Yang X, Zhang X (2012) Transformation of Upland cotton (Gossypium hirsutum L.) with gfp gene as a visual marker. J Integr Agric 11:910–919CrossRefGoogle Scholar
  15. Karimi M, Bleys A, Vanderhaeghen R, Hilson P (2007) Building blocks for plant gene assembly. Plant Physiol 145(4):1183–1191.  https://doi.org/10.1104/pp.107.110411 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Khan T, Reddy VS, Leelavathi S (2010) High-frequency regeneration via somatic embryogenesis of an elite recalcitrant cotton genotype (Gossypium hirsutum L.) and efficient Agrobacterium-mediated transformation. Plant Cell Tissue Organ Cult 101(3):323–330.  https://doi.org/10.1007/s11240-010-9691-y CrossRefGoogle Scholar
  17. Kim C, Chung J, Park S, Burrell A, Kamo K, Byrne D (2004) Agrobacterium tumefaciens-mediated transformation of Rosa hybrida using the green fluorescent protein (GFP) gene. Plant Cell Tissue Organ Cult 78(2):107–111CrossRefGoogle Scholar
  18. Kole C (ed) (2007) Genome mapping and molecular breeding in plants. Springer, HeidelbergGoogle Scholar
  19. Lambardi M, Benelli C, Amorosi S, Branca C, Caricato G, Rugini E (1999) Microprojectlie-DNA delivery in somatic embryos of olive (Olea europaea L.). Acta Hortic 474:505–509CrossRefGoogle Scholar
  20. Lazo GR, Stein PA, Ludwig RA (1991) A DNA transformation–competent Arabidopsis genomic library in Agrobacterium. Biotechnology 9(10):963–967.  https://doi.org/10.1038/nbt1091-963 CrossRefPubMedGoogle Scholar
  21. Leclercq J, Lardet L, Martin F, Chapuset T (2010) The green fluorescent protein as an efficient selection marker for Agrobacterium tumefaciens-mediated transformation in Hevea brasiliensis (Müll. Arg). Plant Cell Rep 29:513–522CrossRefGoogle Scholar
  22. Li ZT, Jayasankar S, Gray D (2001) Expression of a bifunctional green fluorescent protein (GFP) fusion marker under the control of three constitutive promoters and enhanced derivatives in transgenic grape (Vitis vinifera). Plant Sci 160(5):877–887CrossRefGoogle Scholar
  23. Li J, Brunner AM, Meilan R, Strauss SH (2009) Stability of transgenes in tress: expression of two reporter genes in poplar over three field seasons. Tree Physiol 29:299–312CrossRefGoogle Scholar
  24. Matz MV, Fradkov AF, Labas YA, Savitsky AP, Zaraisky AG, Markelov ML, Lukyanov SA (1999) Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 17(10):969–973.  https://doi.org/10.1038/13657 CrossRefPubMedGoogle Scholar
  25. Maximova SN, Miller C, Antúnez de Mayolo G, Pishak S, Young A, Guiltinan MJ (2003) Stable transformation of Theobroma cacao L. and influence of matrix attachment regions on GFP expression. Plant Cell Rep 21(9):872–883.  https://doi.org/10.1007/s00299-003-0596-7 CrossRefPubMedGoogle Scholar
  26. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  27. Mußmann V, Serek M (2011) Selection of transgenic Petunia plants using the green fluorescent protein (GFP). Plant Cell Tissue Organ Cult 107(3):483–492.  https://doi.org/10.1007/s11240-011-9998-3 CrossRefGoogle Scholar
  28. Nishizawa K, Kita Y, Kitayama M, Ishimoto M (2006) A red fluorescent protein, DsRed2, as a visual reporter for transient expression and stable transformation in soybean. Plant Cell Rep 25(12):1355–1361.  https://doi.org/10.1007/s00299-006-0210-x CrossRefPubMedGoogle Scholar
  29. Orinos T, Mitrakos K (1991) Rhizogenesis and somatic embryogenesis in calli from wild olive (Olea europaea var. sylvestris (Miller) Lehr) mature zygotic embryos. Plant Cell Tissue Organ Cult 27(2):183–187.  https://doi.org/10.1007/BF00041288 CrossRefGoogle Scholar
  30. Palomo-Ríos E, Cerezo S, Mercado JA, Pliego-Alfaro F (2016) Agrobacterium-mediated transformation of avocado (Persea americana Mill.) somatic embryos with fluorescent marker genes and optimization of transgenic plant recovery. Plant Cell Tissue Organ Cult 128(2):447–455CrossRefGoogle Scholar
  31. Pérez-Barranco G, Torreblanca R, Padilla IMG, Sánchez-Romero C, Pliego-Alfaro F, Mercado JA (2009) Studies on genetic transformation of olive (Olea europaea L.) somatic embryos: I. Evaluation of different aminoglycoside antibiotics for nptII selection; II. Transient transformation via particle bombardment. Plant Cell Tissue Organ Cult 97(3):243–251.  https://doi.org/10.1007/s11240-009-9520-3 CrossRefGoogle Scholar
  32. Pérez-Jiménez F, Ruano J, Perez Martinez P, Lopez Segura F, López-Miranda J (2007) The influence of olive oil on human health: not a question of fat alone. Mol Nutr Food Res 51(10):1199–1208CrossRefGoogle Scholar
  33. Ribas AF, Dechamp E, Champion A, Bertrand B, Combes M-C, Verdeil J-L, Lapeyre F, Lashermes P, Etienne H (2011) Agrobacterium-mediated genetic transformation of Coffea arabica (L.) is greatly enhanced by using established embryogenic callus cultures. BMC Plant Biol 11(1):92–117CrossRefGoogle Scholar
  34. Rugini E, Caricato G (1995) Somatic embryogenesis and plant recovery from mature tissues of olive cultivars (Olea europaea L.) “Canino” and “Moraiolo”. Plant Cell Rep 14:257–260CrossRefGoogle Scholar
  35. Stewart CN (2006) Go with the glow: fluorescent proteins to light transgenic organisms. Trends Biotechnol 24:155–162CrossRefGoogle Scholar
  36. Torreblanca R, Cerezo S, Palomo-Ríos E, Mercado JA, Pliego-Alfaro F (2010) Development of a high throughput system for genetic transformation of olive (Olea europaea L.) plants. Plant Cell Tissue Organ Cult 103(1):61–69.  https://doi.org/10.1007/s11240-010-9754-0 CrossRefGoogle Scholar
  37. Verkhusha V, Kuznetsova I, Stepanenko O, Zaraisky AG, Shavlovsky M, Turoverov K, Uversky V (2003) High stability of Discosoma DsRed as compared to Aequorea EGFP. Biochem 42:7879–7884CrossRefGoogle Scholar
  38. Vidoy-Mercado I, Imbroda-Solano I, Pliego-Alfaro F, Barceló-Muñoz A (2012) Differential in vitro behaviour of the Spanish olive (Olea europaea L.) cultivars “Arbequina” and “Picual”. Acta Hort 949:27–30CrossRefGoogle Scholar
  39. Wenck A, Pugieux C, Turner M, Dunn M, Stacy C (2003) Reef-coral proteins as visual, non-destructive reporters for plant transformation. Plant Cell Rep 22:244–251CrossRefGoogle Scholar
  40. Zhang B, Rapolu M, Huang L, Su WW (2011) Coordinate expression of multiple proteins in plant cells by exploiting endogenous kex2p-like protease activity. Plant Biotechnol J 9(9):970–981.  https://doi.org/10.1111/j.1467-7652.2011.00607.x CrossRefPubMedGoogle Scholar
  41. Zhou X, Chandrasekharan M (2004) High rooting frequency and functional analysis of GUS and GFP expression in transgenic Medicago truncatula A17. New Phytol 162:813–822CrossRefGoogle Scholar
  42. Zhou X, Carranco R, Vitha S, Hall TC (2005) The dark side of green fluorescent protein. New Phytol 168(2):313–322.  https://doi.org/10.1111/j.1469-8137.2005.01489.x CrossRefPubMedGoogle Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2019

Authors and Affiliations

  1. 1.Departamento de Biología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSICUniversidad de MálagaMálagaSpain
  2. 2.Plant Biology and Crop Science DepartmentRothamsted ResearchHarpendenUK

Personalised recommendations