Advertisement

Protein interactions of SOC1 with SVP are regulated by a few crucial amino acids in flowering pathways of Brassica juncea

  • Chaochuang Li
  • Huiying Gu
  • Wei Jiang
  • Chenhui Zou
  • Dayong Wei
  • Zhimin Wang
  • Qinglin TangEmail author
Original Article
  • 90 Downloads

Abstract

SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) is a vital flowering signal integrator to promote flowering, which is inhibited by a MADS-box transcription factor, SHORT VEGETATIVE PHASE (SVP). However, it remains elusive about how SOC1 interacts with SVP in flowering pathways of Brassica juncea. Here, B. juncea SOC1 (BjuSOC1) gene was cloned and it expressed differently between stem apexes and leaves during the low-temperature vernalization and long-day photoperiod pathways. Yeast two-hybrid and BiFC assays indicated that BjuSOC1 directly interacted with BjuSVP in vitro and in vivo. Interestingly, further studies indicated that mutants of BjuSOC1K108V, BjuSOC1R109L, BjuSOC1C137K could no more interact with BjuSVP, and BjuSVPR137L also led to loss of the protein interaction. It suggested that the 108th, 109th, and 137th of BjuSOC1 and 137th of BjuSVP regulated the protein interactions between BjuSOC1 and BjuSVP. The results provided valuable information for further study on the control of flowering time in B. juncea.

Keywords

Brassica juncea BjuSOC1 BjuSVP Flowering time 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (31000908) and the Fundamental Research Funds for the Central Universities (XDJK2017B036).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

11738_2019_2838_MOESM1_ESM.docx (18 kb)
Supplementary material 1 (DOCX 17 KB)

References

  1. Alvarez-Buylla ER, Liljegren SJ, Pelaz S, Gold SE, Burgeff C, Ditta GS, de Pouplana LR, Martínez-Castilla L, Yanofsky MF (2000) An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc Natl Acad Sci USA 97(10):5328–5333CrossRefGoogle Scholar
  2. Blázquez MA, Ahn JH, Weigel D (2003) A thermosensory pathway controlling flowering time in Arabidopsis thaliana. Nat Genet 33:168–171CrossRefGoogle Scholar
  3. Boss PK, Bastow RM, Mylne JS, Dean C (2004) Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell 16(Suppl):S18–S31CrossRefGoogle Scholar
  4. Burland TG (2000) DNASTAR’s Lasergene sequence analysis software. Methods Mol Biol 132:71–91PubMedGoogle Scholar
  5. Chen J, Zhu X, Ren J, Qiu K, Li Z, Xie Z, Gao J, Zhou X, Kuai B (2017) Suppressor of overexpression of CO 1 negatively regulates dark-induced leaf degreening and senescence by directly repressing pheophytinase and other senescence-associated genes in Arabidopsis. Plant Physiol 173(3):1881–1891CrossRefGoogle Scholar
  6. Cseke LJ, Zheng J, Podila GK (2003) Characterization of PTM5 in aspen trees: a MADS-box gene expressed during woody vascular development. Gene 318:55–67CrossRefGoogle Scholar
  7. de Folter S, Immink RG, Kieffer M, Parenicová L, Henz SR, Weigel D, Busscher M, Kooiker M, Colombo L, Kater MM, Davies B, Angenent GC (2005) Comprehensive interaction map of the Arabidopsis MADS Box transcription factors. Plant Cell 17(5):1424–1433CrossRefGoogle Scholar
  8. Ding L, Wang Y, Yu H (2013) Overexpression of DOSOC1, an ortholog of Arabidopsis SOC1, promotes flowering in the orchid Dendrobium Chao Parya Smile. Plant Cell Physiol 54(4):595–608CrossRefGoogle Scholar
  9. Ferrario S, Busscher J, Franken J, Gerats T, Vandenbussche M, Angenent GC, Immink RG (2004) Ectopic expression of the petunia MADS box gene UNSHAVEN accelerates flowering and confers leaf-like characteristics to floral organs in a dominant-negative manner. Plant Cell 16(6):1490–1505CrossRefGoogle Scholar
  10. Fujiwara S, Oda A, Yoshida R, Niinuma K, Miyata K, Tomozoe Y, Tajima T, Nakagawa M, Hayashi K, Coupland G, Mizoguchi T (2008) Circadian clock proteins LHY and CCA1 regulate SVP protein accumulation to control flowering in Arabidopsis. Plant Cell 20:2960–2971CrossRefGoogle Scholar
  11. Hartmann U, Höhmann S, Nettesheim K, Wisman E, Saedler H, Huijser P (2000) Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis. Plant J 21(4):351–360CrossRefGoogle Scholar
  12. Hepworth SR, Valverde F, Ravenscroft D, Mouradov A, Coupland G (2002) Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. EMBO J 21:4327–4337CrossRefGoogle Scholar
  13. Jung C, Müller AE (2009) Flowering time control and applications in plant breeding. Trends Plant Sci 14:563–573CrossRefGoogle Scholar
  14. Lee J, Lee I (2010) Regulation and function of SOC1, a flowering pathway integrator. J Exp Bot 61(9):2247–2254CrossRefGoogle Scholar
  15. Lee H, Suh SS, Park E, Cho E, Ahn JH, Kim SG, Lee JS, Kwon YM, Lee I (2000) The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev 14:2366–2376CrossRefGoogle Scholar
  16. Lee S, Kim J, Han JJ, Han MJ, An G (2004) Functional analyses of the flowering time gene OsMADS50, the putative SUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in rice. Plant J 38(5):754–764CrossRefGoogle Scholar
  17. Li D, Liu C, Shen L, Wu Y, Chen H, Robertson M, Helliwell CA, Ito T, Meyerowitz E, Yu H (2008) A repressor complex governs the integration of flowering signals in Arabidopsis. Dev Cell 15(1):110–120CrossRefGoogle Scholar
  18. Liu C, Zhou J, Bracha-Drori K, Yalovsky S, Ito T, Yu H (2007) Specification of Arabidopsis floral meristem identity by repression of flowering time genes. Development 134(10):1901–1910CrossRefGoogle Scholar
  19. Liu C, Chen H, Er HL, Soo HM, Kumar PP, Han JH, Liou YC, Yu H (2008) Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis. Development 135:1481–1491CrossRefGoogle Scholar
  20. Liu C, Xi W, Shen L, Tan C, Yu H (2009) Regulation of floral patterning by flowering time genes. Dev Cell 16(5):711–722CrossRefGoogle Scholar
  21. Marín-González E, Matías-Hernández L, Aguilar-Jaramillo AE, Lee JH, Ahn JH, Suárez-López P, Pelaz S (2015) SHORT VEGETATIVE PHASE up-regulates TEMPRANILLO2 floral repressor at low ambient temperatures. Plant Physiol 169(2):1214–1224CrossRefGoogle Scholar
  22. Moon J, Suh SS, Lee H, Choi KR, Hong CB, Paek NC, Kim SG, Lee I (2003) The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J 35(5):613–623CrossRefGoogle Scholar
  23. Mouradov A, Cremer F, Coupland G (2002) Control of flowering time: interacting pathways as a basis for diversity. Plant cell 14(Suppl):S111–S130CrossRefGoogle Scholar
  24. Ni K, Wang Y, Cai Y, Pang H (2015) Natural lactic acid bacteria population and silage fermentation of whole-crop wheat. Asia Aust J Anim Sci 28(8):1123–1132CrossRefGoogle Scholar
  25. Ofran Y, Rost B (2007) ISIS: interaction sites identified from sequence. Bioinformatics 23(2):e13–e16.  https://doi.org/10.1093/bioinformatics/btl303 CrossRefPubMedGoogle Scholar
  26. Papaefthimiou D, Kapazoglou A, Tsaftaris AS (2012) Cloning and characterization of SOC1 homologs in barley (Hordeum vulgare) and their expression during seed development and in response to vernalization. Physiol Plant 146(1):71–85CrossRefGoogle Scholar
  27. Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288(5471):1613–1616CrossRefGoogle Scholar
  28. Schütze K, Harter K, Chaban C (2009) Bimolecular Fluorescence Complementation (BiFC) to study protein–protein interactions in living plants cells. Methods Mol Biol 479:189–202CrossRefGoogle Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2019

Authors and Affiliations

  • Chaochuang Li
    • 1
    • 2
  • Huiying Gu
    • 1
  • Wei Jiang
    • 1
  • Chenhui Zou
    • 1
  • Dayong Wei
    • 1
    • 3
  • Zhimin Wang
    • 1
    • 3
  • Qinglin Tang
    • 1
    • 3
    Email author
  1. 1.College of Horticulture and Landscape ArchitectureSouthwest UniversityChongqingChina
  2. 2.School of Life SciencesChongqing UniversityChongqingChina
  3. 3.Key Laboratory of Horticulture Science for Southern Mountainous RegionsMinistry of EducationChongqingChina

Personalised recommendations