Advertisement

Acta Physiologiae Plantarum

, 41:28 | Cite as

Action of ultraviolet-C radiation and p-coumaric acid on stilbene accumulation and expression of stilbene biosynthesis-related genes in the grapevine Vitis amurensis Rupr.

  • Konstantin V. KiselevEmail author
  • Zlata V. Ogneva
  • Andrey R. Suprun
  • Valeria P. Grigorchuk
  • Alexandra S. Dubrovina
Short Communication
  • 36 Downloads

Abstract

This paper investigated the effects of p-coumaric acid (CA) on stilbene biosynthesis in healthy cuttings of grapevine Vitis amurensis Rupr. under control conditions and after ultraviolet (UV-C) irradiation. It has been shown that the content of the detected six stilbenes (cis-piceid, t-piceid, t-ε-viniferin, cis-ε-viniferin, t-resveratrol, and t-δ-viniferin) increased after feeding with CA up to 0.5 mg g−1 of the dry weight (DW), which is 2.4 times higher than that under control conditions. Feeding with CA and UV-C irradiation exerted a combined positive effect on the content of stilbenes increasing it to 0.7 mg g−1 DW. In addition, the CA treatment improved viability of the cuttings after the UV-C treatment. The elevation in stilbene content induced by CA and UV-C correlated with induction of stilbene biosynthetic genes encoding stilbene synthases, resveratrol O-glucosyltransferase, polyphenol oxidase, and cationic peroxidase. The data indicate that feeding with the precursors of phenolic compounds could be an effective strategy for activation of stilbene production.

Keywords

Glucosyltransferase Peroxidase Piceid Resveratrol Oxidase Viniferin 

Abbreviations

DW

Dry weight

FW

Fresh weight

Notes

Acknowledgements

This study was supported by a grant from the Russian Foundation for Basic Research (19-04-00063-а).

Supplementary material

11738_2019_2818_MOESM1_ESM.doc (255 kb)
Supplementary material 1 (DOC 255 KB)

References

  1. Aleynova OA, Grigorchuk VP, Dubrovina AS, Rybin VG, Kiselev KV (2016) Stilbene accumulation in cell cultures of Vitis amurensis Rupr. overexpressing VaSTS1, VaSTS2, and VaSTS7 genes. Plant Cell Tissue Organ Cult 125:329–339CrossRefGoogle Scholar
  2. Austin MB, Noel JP (2003) The chalcone synthase superfamily of type III polyketide synthases. Nat Prod Rep 20:79–110CrossRefGoogle Scholar
  3. Duan D, Halter D, Baltenweck R, Tisch C, Tröster V, Kortekamp A, Hugueney P, Nick P (2015) Genetic diversity of stilbene metabolism in Vitis sylvestris. J Exp Bot 66:3243–3257CrossRefGoogle Scholar
  4. Dubrovina AS, Kiselev KV (2017) Regulation of stilbene biosynthesis in plants. Planta 246:597–623CrossRefGoogle Scholar
  5. Dubrovina AS, Kiselev KV, Khristenko VS, Aleynova OA (2015) VaCPK20, a calcium-dependent protein kinase gene of wild grapevine Vitis amurensis Rupr., mediates cold and drought stress tolerance. J Plant Physiol 185:1–12CrossRefGoogle Scholar
  6. Dubrovina AS, Aleynova OA, Kiselev KV (2016) Influence of overexpression of the true and false alternative transcripts of calcium-dependent protein kinase CPK9 and CPK3a genes on the growth, stress tolerance, and resveratrol content in Vitis amurensis cell cultures. Acta Physiol Plant 38:78CrossRefGoogle Scholar
  7. Hall D, De Luca V (2007) Mesocarp localization of a bi-functional resveratrol/hydroxycinnamic acid glucosyltransferase of Concord grape (Vitis labrusca). Plant J 49:579–591CrossRefGoogle Scholar
  8. Iriti M, Rossoni M, Borgo M, Faoro F (2004) Benzothiadiazole enhances resveratrol and anthocyanin biosynthesis in grapevine, meanwhile improving resistance to Botrytis cinerea. J Agric Food Chem 52:4406–4413CrossRefGoogle Scholar
  9. Jeandet P, Douillt-Breuil AC, Bessis R, Debord S, Sbaghi M, Adrian M (2002) Phytoalexins from the Vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J Agric Food Chem 50:2731–2741CrossRefGoogle Scholar
  10. Kiselev KV, Dubrovina AS, Tyunin AP (2015) The methylation status of plant genomic DNA influences PCR efficiency. J Plant Physiol 175:59–67CrossRefGoogle Scholar
  11. Kiselev KV, Aleynova OA, Grigorchuk VP, Dubrovina AS (2017) Stilbene accumulation and expression of stilbene biosynthesis pathway genes in wild grapevine Vitis amurensis Rupr. Planta 245:151–159CrossRefGoogle Scholar
  12. Kiselev KV, Ogneva ZV, Dubrovina AS, Suprun AR, Tyunin AP (2018) Altered somatic mutation level and DNA repair gene expression in Arabidopsis thaliana exposed to ultraviolet C, salt, and cadmium stresses. Acta Physiol Plant 40:UNSP 21CrossRefGoogle Scholar
  13. Lambert C, Richard T, Renouf E, Bisson J, Waffo-Teguo P, Bordenave L, Ollat N, Merillon JM, Cluzet S (2013) Comparative analyses of stilbenoids in canes of major Vitis vinifera L. cultivars. J Agric Food Chem 61:11392–11399CrossRefGoogle Scholar
  14. Liu L, Li H (2013) Review: Research progress in amur grape, Vitis amurensis Rupr. Can J Plant Sci 93:565–575CrossRefGoogle Scholar
  15. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408CrossRefGoogle Scholar
  16. Pezet R (1998) Purification and characterization of a 32-kDa laccase-like stilbene oxidase produced by Botrytis cinerea Pers.:Fr. FEMS Microbiol Lett 167:203–208CrossRefGoogle Scholar
  17. Rupprich N, Hildebrand H, Kindl H (1980) Substrate specificity in vivo and in vitro in the formation of stilbenes—biosynthesis of rhaponticin. Arch Biochem Biophys 200:72–78CrossRefGoogle Scholar
  18. Schmidlin L, Poutaraud A, Claudel P, Mestre P, Prado E, Santos-Rosa M, Wiedemann-Merdinoglu S, Karst F, Merdinoglu D, Hugueney P (2008) A stress-inducible resveratrol O-methyltransferase involved in the biosynthesis of pterostilbene in grapevine. Plant Physiol 148:1630–1639CrossRefGoogle Scholar
  19. Shumakova OA, Manyakhin AY, Kiselev KV (2011) Resveratrol content and expression of phenylalanine ammonia-lyase and stilbene synthase genes in cell cultures of Vitis amurensis treated with coumaric acid. Appl Biochem Biotechnol 165:1427–1436CrossRefGoogle Scholar
  20. Suwalsky M, Villena F, Gallardo MJ (2015) In vitro protective effects of resveratrol against oxidative damage in human erythrocytes. Biochim Biophys Acta Biomembr 1848:76–82CrossRefGoogle Scholar
  21. Toffali K, Ceoldo S, Stocchero M, Levi M, Guzzo F (2013) Carrot-specific features of the phenylpropanoid pathway identified by feeding cultured cells with defined intermediates. Plant Sci 209:81–92CrossRefGoogle Scholar
  22. Tyunin AP, Nityagovsky NN, Grigorchuk VP, Kiselev KV (2018) Stilbene content and expression of stilbene synthase genes in cell cultures of Vitis amurensis treated with cinnamic and caffeic acids. Biotechnol Appl Biochem 65:150–155CrossRefGoogle Scholar
  23. Xi HF, Ma L, Wang LN, Li SH, Wang LJ (2015) Differential response of the biosynthesis of resveratrols and flavonoids to UV-C irradiation in grape leaves. N Z J Crop Hortic Sci 43:163–172CrossRefGoogle Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2019

Authors and Affiliations

  • Konstantin V. Kiselev
    • 1
    • 2
    Email author
  • Zlata V. Ogneva
    • 1
  • Andrey R. Suprun
    • 1
    • 2
  • Valeria P. Grigorchuk
    • 1
  • Alexandra S. Dubrovina
    • 1
  1. 1.Laboratory of BiotechnologyFederal Scientific Center of the East Asia Terrestrial Biodiversity, FEB RASVladivostokRussia
  2. 2.Department of Biodiversity, The School of Natural SciencesFar Eastern Federal UniversityVladivostokRussia

Personalised recommendations