Chloroplast ultrastructure and hormone endogenous levels are differently affected under light and dark conditions during in vitro culture of Guadua chacoensis (Rojas) Londoño & P. M. Peterson

  • Luiza Giacomolli Polesi
  • Hugo Pacheco de Freitas Fraga
  • Leila do Nascimento Vieira
  • Angelo Schuabb Heringer
  • Thiago Sanches Ornellas
  • Henrique Pessoa dos Santos
  • Miguel Pedro Guerra
  • Rosete PescadorEmail author
Original Article


Guadua chacoensis (Poaceae) is a woody bamboo native from the Atlantic forest biome. Morphogenetic and physiological studies are scarce in bamboos, and tissue culture-based biotechnologies tools can be used to investigate ultrastructure and physiological processes as well as to mass-propagate specific genotypes. This study evaluated the effect of light and dark conditions on chloroplast biogenesis as well as in the endogenous levels of zeatin (Z), abscisic acid (ABA), gibberellic acid (GA4), and jasmonic acid (JA) during in vitro culture of G. chacoensis. An increase was observed, followed by a decrease in starch content in response to light treatment, and in contrast, in darkness, an accumulation of starch which is associated to amyloplast formation at day 30 was observed. No etioplast formation was observed even in the dark and this was associated with the presence of fully developed chloroplast at the beginning of the experiment. Z levels quantified showed distinct behavior, as in light, no difference in the levels was observed, except at day 10, and in darkness, the levels increased along the evaluation time. ABA, GA4, and JA biosynthesis increased along the time of evaluation in light condition. In contrast, in darkness, the levels remained unaltered, excepted for an increase in JA levels at day 10, suggesting a strong relationship between light and these phytohormone levels. Possible reasons why light’s presence and absence cause changes in chloroplast ultrastructure and hormone endogenous levels in in vitro cultivated culms of G. chacoensis are discussed.


Bamboos Micropropagation Transmission electron microscopy Plant physiology Phytohormone 



This work was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq 457726/2013-0, and 306126/2013-3). LGP thank to CAPES for the master’s degree scholarship. The authors also thank to Central Laboratory of Electron Microscopy (LCME) of the Federal University of Santa Catarina, Brazil.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Akinlabi ET, Anane-Fenin K, Akwada DR (2017) Bamboo taxonomy and distribution across the globe. In Bamboo (ed), Springer, Cham, pp 1–37. CrossRefGoogle Scholar
  2. Alabadí D, Gallego-Bartolomé J, Orlando L, García-Cárcel L, Rubio V, Martínez C, Blázquez MA (2008) Gibberellins modulate light signaling pathways to prevent Arabidopsis seedling de-etiolation in darkness. Plant J 53:324–335. CrossRefPubMedGoogle Scholar
  3. Austin JR, Frost E, Vidi PA, Kessler F, Staehelin LA (2006) Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. Plant Cell 18:1693–1703. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bach A, Kapczyńska A, Dziurka K, Dziurka M (2018) The importance of applied light quality on the process of shoot organogenesis and production of phenolics and carbohydrates in Lachenalia sp. cultures in vitro. S Afr J Bot 114:14–19. CrossRefGoogle Scholar
  5. Blswal UC, Biswal B (1988) Ultrastructural modifications and biochemical changes during senescence of chloroplasts. Int Rev Cytol 113:271–321. CrossRefGoogle Scholar
  6. Bréhélin C, Kessler F, van Wijk KJ (2007) Plastoglobules: versatile lipoprotein particles in plastids. Trends Plant Sci 12:260–266. CrossRefPubMedGoogle Scholar
  7. Bystriakova N, Kapos V, Lysenko I (2004) Bamboo biodiversity: Africa, Madagascar and the Americas. UNEP-WCMC Biodiversity Series No. 19, Nairobi page 14Google Scholar
  8. Chory J, Peto CA (1990) Mutations in the DET1 gene affect cell-type-specific expression of light-regulated genes and chloroplast development in Arabidopsis. Proc Natl Acad Sci USA 87:8776–8780. CrossRefPubMedGoogle Scholar
  9. Chory J, Peto C, Feinbaum R, Pratt L, Ausubel F (1989) Arabidopsis thaliana mutant that develops as a light-grown plant in the absence of light. Cell 58:991–999. CrossRefPubMedGoogle Scholar
  10. Chory J, Reinecke D, Sim S, Washburn T, Brenner M (1994) A role for cytokinins in de-etiolation in Arabidopsis (det mutants have an altered response to cytokinins). Plant Physiol 104:339–347. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cortleven A, Schmülling T (2015) Regulation of chloroplast development and function by cytokinin. J Exp Bot 66:4999–5013. CrossRefPubMedGoogle Scholar
  12. Du H, Liu H, Xiong L (2013) Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice. Front Plant Sci 4:1–10. CrossRefGoogle Scholar
  13. Erland LAE, Shukla MR, Glover WB, Saxena PK (2017) A simple and efficient method for analysis of plant growth regulators: a new tool in the chest to combat recalcitrance in plant tissue culture. Plant Cell Tiss Organ Cult 131:459–470. CrossRefGoogle Scholar
  14. Filgueiras TS, Santos-Gonçalves AP (2004) A checklist of the basal grasses and bamboos in Brazil (Poaceae). J Am Bamboo Soc 18:7–18Google Scholar
  15. Fleet CM, Sun TP (2005) A DELLAcate balance: the role of gibberellin in plant morphogenesis. Curr Opin Plant Biol 8:77–85. CrossRefPubMedGoogle Scholar
  16. Fraga HPF, do Nascimento Vieira L, Puttkammer CC, dos Santos HP, de Andrade Garighan J, Guerra MP (2016) Glutathione and abscisic acid supplementation influences somatic embryo maturation and hormone endogenous levels during somatic embryogenesis in Podocarpus lambertii Klotzsch ex Endl. Plant Sci 253:98–106. CrossRefPubMedGoogle Scholar
  17. Geigenberger P (2011) Regulation of starch biosynthesis in response to a fluctuating environment. Plant Physiol 155:1566–1577. CrossRefPubMedPubMedCentralGoogle Scholar
  18. George EF, Hall MA, De Klerk GJ (2008) Effects of the physical environment. In: Plant propagation by tissue culture. Springer, Dordrecht, pp 423–464. CrossRefGoogle Scholar
  19. Gibson SI (2004) Sugar and phytohormone response pathways: navigating a signalling network. J Exp Bot 55:253–264. CrossRefPubMedGoogle Scholar
  20. Greening MT, Butterfield FJ, Harris N (1982) Chloroplast ultrastructure during senescence and regreening of flax cotyledons. New Phytol 92:279–285. CrossRefGoogle Scholar
  21. Grzyb M, Kalandyk A, Waligórski P, Mikuła A (2017) The content of endogenous hormones and sugars in the process of early somatic embryogenesis in the tree fern Cyathea delgadii Sternb. Plant Cell Tiss Organ Cult 129:387–397. CrossRefGoogle Scholar
  22. Guerreiro C (2014) Flowering cycles of woody bamboos native to southern South America. J Plant Res 127:307–313. CrossRefPubMedGoogle Scholar
  23. Harris JB (1978) Development of a tubular apparatus in chloroplasts of aging Cyphomandra leaves. Cytobios 21:151–164PubMedGoogle Scholar
  24. Heldt HW, Sauer F (1971) The inner membrane of the chloroplast envelope as the site of specific metabolite transport. Biochim Biophys Acta 234:83–91. CrossRefPubMedGoogle Scholar
  25. Hilliard JH, West SH (1971) The association of chloroplast peripheral reticulum with low photorespiration rates in a photorespiring plant species. Planta 99:352–356. CrossRefPubMedGoogle Scholar
  26. Hiscox JT, Israelstam GF (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot 57:1332–1334. CrossRefGoogle Scholar
  27. Jan S, Abbas N, Ashraf M, Ahmad P (2018) Roles of potential plant hormones and transcription factors in controlling leaf senescence and drought tolerance. Protoplasma 1:17. CrossRefGoogle Scholar
  28. Jibran R, Hunter DA, Dijkwel PP (2013) Hormonal regulation of leaf senescence through integration of developmental and stress signals. Plant Mol Biol 82:547–561. CrossRefPubMedGoogle Scholar
  29. Kazan K, Manners JM (2011) The interplay between light and jasmonate signalling during defence and development. J Exp Bot 62:4087–4100. CrossRefPubMedGoogle Scholar
  30. Kelchner SA, Bamboo Phylogeny Group (2013) Higher level phylogenetic relationships within the bamboos (Poaceae: Bambusoideae) based on five plastid markers. Mol Phylogenet Evol 67:404–413. CrossRefPubMedGoogle Scholar
  31. Kusnetsov VV, Oelmüller R, Sarwat MI, Porfirova SA, Cherepneva GN, Herrmann RG, Kulaeva ON (1994) Cytokinins, abscisic acid and light affect accumulation of chloroplast proteins in Lupinus luteus cotyledons without notable effect on steady-state mRNA levels. Planta 194:318–327. CrossRefGoogle Scholar
  32. Laetsch WM (1968) Chloroplast specialization in dicotyledons possessing the C4-dicarboxylic acid pathway of photosynthetic CO2 fixation. Am J Bot 55:875–883CrossRefGoogle Scholar
  33. Lee ST, Huang WL (2013) Cytokinin, auxin, and abscisic acid affects sucrose metabolism conduce to de novo shoot organogenesis in rice (Oryza sativa L.) callus. Bot Stud 54:5. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Li K, Gao Z, He H, Terzaghi W, Fan LM, Deng XW, Chen H (2015) Arabidopsis DET1 represses photomorphogenesis in part by negatively regulating DELLA protein abundance in darkness. Mol Plant 8:622–630. CrossRefPubMedGoogle Scholar
  35. Lindquist E, Solymosi K, Aronsson H (2016) Vesicles are persistent features of different plastids. Traffic 17:1125–1138. CrossRefPubMedGoogle Scholar
  36. Lochmanová G, Zdráhal Z, Konečná H, Koukalová Š, Malbeck J, Souček P, Brzobohatý B (2008) Cytokinin-induced photomorphogenesis in dark-grown Arabidopsis: a proteomic analysis. J Exp Bot 59:3705–3719. CrossRefPubMedGoogle Scholar
  37. Londoño X (1998) A decade of observations of a Guadua angustifolia plantation in Colombia. J Am Bamboo Soc 12:37–42Google Scholar
  38. Londoño X, Peterson PM (1992) Guadua chacoensis (Poaceae: Bambuseae), its taxonomic identity, morphology, and affinities. Novon (St Louis) 2:41–47Google Scholar
  39. Londoño X, Camayo GC, Riaño NM. López Y (2002) Characterization of the anatomy of Guadua angustifolia (Poaceae: Bambusoideae) culms. J Am Bamboo Soc 16:18–31Google Scholar
  40. Mangat BS, Pelekis MK, Cassells AC (1990) Changes in the starch content during organogenesis in in vitro cultured Begonia rex stem explants. Physiol Plant 79:267–274. CrossRefGoogle Scholar
  41. Montiel M, Jiménez VM, Guevara E (2006) Caracterización anatómica ultraestructural de las variantes” Atlántica”,” Sur” y” Cebolla” del bambú, Guadua angustifolia (Poaceae: Bambusoideae), en Costa Rica. Rev Biol Trop 54:1–12Google Scholar
  42. Morel G, Wetmore RH (1951) Tissue culture of monocotyledons. Am J Bot 38:138–140CrossRefGoogle Scholar
  43. Munné-Bosch S, Alegre L (2004) Die and let live: leaf senescence contributes to plant survival under drought stress. Funct Plant Biol 31:203–216. CrossRefGoogle Scholar
  44. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497. CrossRefGoogle Scholar
  45. Ornellas TS, Werner D, Holderbaum DF, Scherer RF, Guerra MP (2017) Effects of Vitrofural, BAP and meta-Topolin in the in vitro culture of Dendrocalamus asper. Acta Hortic 1155: 285–292. CrossRefGoogle Scholar
  46. Panizzo CC, Fernández PV, Colombatto D, Ciancia M, Vega AS (2017) Anatomy, nutritional value and cell wall chemical analysis of foliage leaves of Guadua chacoensis (Poaceae, Bambusoideae, Bambuseae), a promising source of forage. J Sci Food Agric 97:1349–1358. CrossRefPubMedGoogle Scholar
  47. Parthier B (1979) The role of phytohormones (cytokinins) in chloroplast development. Biochem Physiol Pflanz 174:173–214. CrossRefGoogle Scholar
  48. Polanská L, Vičánková A, Nováková M, Malbeck J, Dobrev PI, Brzobohatý B, Vaňková R, Macháčková I (2006) Altered cytokinin metabolism affects cytokinin, auxin, and abscisic acid contents in leaves and chloroplasts, and chloroplast ultrastructure in transgenic tobacco. J Exp Bot 58:637–649. CrossRefPubMedGoogle Scholar
  49. Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212CrossRefGoogle Scholar
  50. Sandhu M, Wani SH, Jiménez VM (2017) In vitro propagation of bamboo species through axillary shoot proliferation: a review. Plant Cell Tissue Organ Cult 132:27–53. CrossRefGoogle Scholar
  51. Schmidt ÉC, Pereira B, Pontes CLM, dos Santos R, Scherner F, Horta PA, Martins RP, Latini A, Maraschin M, Bouzon ZL (2012) Alterations in architecture and metabolism induced by ultraviolet radiation-B in the carragenophyte Chondracanthus teedei (Rhodophyta, Gigartinales). Protoplasma 249:353–367. CrossRefPubMedGoogle Scholar
  52. Seo M, Koshiba T (2002) Complex regulation of ABA biosynthesis in plants. Trends Plant Sci 7:41–48CrossRefGoogle Scholar
  53. Singh SR, Singh R, Kalia S, Dalal S, Dhawan AK, Kalia RK (2013) Limitations, progress and prospects of application of biotechnological tools in improvement of bamboo—a plant with extraordinary qualities. Physiol Mol Biol Plants 19:21–41. CrossRefPubMedGoogle Scholar
  54. Solymosi K, Aronsson H (2013) Etioplasts and their significance in chloroplast biogenesis. In: Plastid development in leaves during growth and senescence. Springer, Dordrecht, pp 39–71. CrossRefGoogle Scholar
  55. Solymosi K, Keresztes Á (2012) Plastid structure, diversification and interconversions II. Land plants. Curr Chem Biol 6:187–204CrossRefGoogle Scholar
  56. Soreng RJ, Peterson PM, Romaschenko K, Davidse G, Zuloaga FO, Judziewicz EJ, Morrone O (2015) A worldwide phylogenetic classification of the Poaceae (Gramineae). J Syst Evol 53:117–137. CrossRefGoogle Scholar
  57. Staehelin LA (2003) Chloroplast structure: from chlorophyll granules to supra-molecular architecture of thylakoid membranes. Photosynth Res 76:185–196. CrossRefPubMedGoogle Scholar
  58. Stetler DA, Laetsch WM (1965) Kinetin-induced chloroplast maturation in cultures of tobacco tissue. Science 149:1387–1388. CrossRefPubMedGoogle Scholar
  59. Stirk WA, Bálint P, Tarkowská D, Novák O, Maróti G, Ljung K, Van Staden J (2014) Effect of light on growth and endogenous hormones in Chlorella minutissima (Trebouxiophyceae). Plant Physiol Biochem 79:66–76. CrossRefPubMedGoogle Scholar
  60. Sulpice R, Pyl ET, Ishihara H, Trenkamp S, Steinfath M, Witucka-Wall H, Gibon Y, Usadel B, Poree F, Piques MC, Korff MV, Steinhauser MC, Keurentjes JJB, Guenther M, Hoehne M, Selbig J, Fernie AR, Altmann T, Stitt M (2009) Starch as a major integrator in the regulation of plant growth. Proc Natl Acad Sci USA 106:10348–10353. CrossRefPubMedGoogle Scholar
  61. Sun TP (2008) Gibberellin metabolism, perception and signaling pathways in Arabidopsis. Arabidopsis Book 6:e0103. CrossRefPubMedPubMedCentralGoogle Scholar
  62. Sun T, Yuan H, Cao H, Yazdani M, Tadmor Y, Li L (2017) Carotenoid metabolism in plants: the role of plastids. Mol Plant 11:58–74. CrossRefPubMedGoogle Scholar
  63. Suzuki RM, Kerbauy GB, Pescador R, Purgatto E, Ceccantini GC, Ferreira WDM (2010) Dark-induced hormone changes coincide with the resumption of light-inhibited shoot growth in Catasetum fimbriatum (Orchidaceae). J Plant Physiol 167:375–381. CrossRefPubMedGoogle Scholar
  64. Szczepanik J, Sowiński P (2014) The occurrence of chloroplast peripheral reticulum in grasses: a matter of phylogeny or a matter of function? Acta Physiol Plant 36:1133–1142. CrossRefGoogle Scholar
  65. Trufelli H, Palma P, Famiglini G, Cappiello A (2011) An overview of matrix effects in liquid chromatography–mass spectrometry. Mass Spectrom Rev 30:491–509. CrossRefPubMedGoogle Scholar
  66. Vega AS, Hernández JC (2008) La floración de Guadua chacoensis (Poaceae, Bambusoideae, Bambuseae). Revista de la Faculted de Agronomia 28:107–110Google Scholar
  67. Vega AS, Castro MA, Guerreiro C (2016) Ontogeny of fusoid cells in Guadua species (Poaceae, Bambusoideae, Bambuseae): evidence for transdifferentiation and possible functions. Flora 222:13–19. CrossRefGoogle Scholar
  68. Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313. CrossRefGoogle Scholar
  69. Wise RR (2007) The diversity of plastid form and function. In: The structure and function of plastids. Springer, Dordrecht, pp 3–26. CrossRefGoogle Scholar
  70. Wise RR, Harris JB (1984) The three-dimensional structure of the Cyphomandra betacea chloroplast peripheral reticulum. Protoplasma 119:222–225. CrossRefGoogle Scholar
  71. Yamburenko MV, Zubo YO, Vanková R, Kusnetsov VV, Kulaeva ON, Börner T (2013) Abscisic acid represses the transcription of chloroplast genes. J Exp Bot 64:4491–4502. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2019

Authors and Affiliations

  • Luiza Giacomolli Polesi
    • 1
  • Hugo Pacheco de Freitas Fraga
    • 2
  • Leila do Nascimento Vieira
    • 1
  • Angelo Schuabb Heringer
    • 1
  • Thiago Sanches Ornellas
    • 1
  • Henrique Pessoa dos Santos
    • 3
  • Miguel Pedro Guerra
    • 1
    • 4
  • Rosete Pescador
    • 1
    Email author
  1. 1.Graduate Program in Plant Genetic Resources, Laboratory of Plant Developmental Physiology and GeneticsFederal University of Santa CatarinaFlorianópolisBrazil
  2. 2.Graduate Program in Botany, Laboratory of Plant MicropropagationFederal University of ParanáCuritibaBrazil
  3. 3.Brazilian Agricultural Research Corporation (Embrapa), Laboratory of Plant PhysiologyEmbrapa Grape and WineBento GonçalvesBrazil
  4. 4.Tree and Timber InstituteNational Research Council of ItalyFlorenceItaly

Personalised recommendations