Acta Physiologiae Plantarum

, 40:186 | Cite as

Antifungal properties of a thaumatin-like protein from watermelon

  • Man Zhang
  • Jinhua XuEmail author
  • Guang Liu
  • Xingping Yang
Original Article


Fusarium wilt is a causal disease that threatens watermelon production. In this work, we report the identification and antifungal activity of a thaumatin-like protein (ClTLP27) that was identified from a Fusarium oxysporum (F. oxysporum)-responsive proteomic analysis during watermelon and F. oxysporum interaction. A two-dimensional gel electrophoresis approach was used to compare changes in the leaf proteome profiles of rootstock-grafted watermelon upon F. oxysporum inoculation, and the abundance of a thaumatin-like protein was found to be differentially accumulated. This thaumatin-like protein gene was further cloned from watermelon and named ClTLP27 (accession no. MF445020). ClTLP27 contains 807 nucleotides and encodes a putative polypeptide of 268 amino acids with a calculated molecular mass of 28.93 kDa and a theoretical pI of 7.65. Sequence alignment showed that ClTLP27 contains the conserved motif with 16 cysteines. Phylogenetic analysis indicated that ClTLP27 belongs to the thaumatin-like protein cluster, and is closely related to the Cucumis TLP gene with a sequence identity of 90%. Real-time PCR analysis revealed that ClTLP27 was expressed in all tissues examined, with the highest levels of expression occurring in the roots. Expression profiles of ClTLP27 following F. oxysporum inoculation revealed that the transcript level of ClTLP27 varied in susceptible and resistant seedlings. ClTLP27 was further cloned into the PET28a(+) vector to obtain a bacterially expressed recombinant His-ClTLP27 protein. Antifungal activity analysis showed that the His-ClTLP27 protein significantly inhibited the mycelial growth of F. oxysporum f.sp. niveum race 1, Fusarium solani f.sp. cucurbitae race 1, F. oxysporum f.sp. melonis, Fusarium verticillioides and Didymella bryoniae. This work implies that ClTLP27 could be used as botanical fungicide or as a potential gene in the engineering of disease-resistant watermelon.


Watermelon Thaumatin-like protein Fusarium oxysporum f.sp. niveum Antifungal activity 



This work was supported by National Key R&D Program of China (2018YFD0100703), National Industrial Technology System for Watermelon & Melon, Title: Breeding of Grafting Rootstocks for Watermelon & Melon (CARS-26), and The earmarked fund for Jiangsu Agricultural Industry Technology System (SXGC[2017]259).

Supplementary material

11738_2018_2759_MOESM1_ESM.docx (14 kb)
Supplementary material 1 (DOCX 13 KB)
11738_2018_2759_MOESM2_ESM.jpg (3.3 mb)
Supplementary material 2 (JPG 3387 KB)
11738_2018_2759_MOESM3_ESM.jpg (2.9 mb)
Supplementary material 3 (JPG 3016 KB)


  1. Acharya K, Pal AK, Gulati A, Kumar S, Singh AK, Ahuja PS (2013) Overexpression of Camellia sinensis thaumatin-like protein, CsTLP in potato confers enhanced resistance to Macrophomina phaseolina and Phytophthora infestans infection. Mol Biotechnol 54:609–622CrossRefGoogle Scholar
  2. Cao J, Lv YQ, Hou ZR, Li X, Ding LN (2016) Expansion and evolution of thaumatin-like protein (TLP) gene family in six plants. Plant Growth Regul 79:299–307CrossRefGoogle Scholar
  3. Chang PFL, Hsu CC, Lin YH, Chen KS, Huang JW, Liou TD (2008) Histopathology comparison and phenylalanine ammonia lyase (PAL) gene expressions in Fusarium wilt infected watermelon. Aust J Agric Res 59:1146–1155CrossRefGoogle Scholar
  4. Donoso A, Rodriguez V, Carrasco A, Ahumada R, Sanfuentes E, Valenzuela S (2015) Relative expression of seven candidate genes for pathogen resistance on Pinus radiate infected with Fusarium circinatum. Physiol Mol Plant P 92:42–50CrossRefGoogle Scholar
  5. Durick K, Mendlein J, Xanthopoulos KG (1999) Hunting with traps: genome-wide strategies for gene discovery and functional analysis. Genome Res 9:1019–1925CrossRefGoogle Scholar
  6. Fierens E, Rombouts S, Gebruers K, Goesaert H, Brijs K, Beaugrand J, Volckaert G, Van Campenhout S, Proost P, Courtin CM, Delcour JA (2007) TLXI, a novel type of xylanase inhibitor from wheat (Triticum aestivum) belonging to the thaumatin family. Biochem J 403:583–591CrossRefGoogle Scholar
  7. Freitas CDT, Silva MZR, Bruno-Moreno F, Monteiro-Moreira ACO, Moreira RA, Ramos MV (2015) New constitutive latex osmotin-like proteins lacking antifungal activity. Plant Physiol Biochem 96:45–52CrossRefGoogle Scholar
  8. Futamura N, Tani N, Tsumura Y, Nakajima N, Sakaguchi M, Shinohara K (2006) Characterization of genes for novel thaumatin-like proteins in Cryptomeria japonica. Tree Physiol 26:51–62CrossRefGoogle Scholar
  9. Gómez-Casado C, Murua-García A, Garrido-Arandia M, González-Melendi P, Sánchez-Monge R, Barber D, Pacios LF, Díaz-Perales A (2014) Alt a 1 from Alternaria interacts with PR5 thaumatin-like proteins. FEBS Lett 588:1501–1508CrossRefGoogle Scholar
  10. Grenier J, Potvin C, Trudel J, Asselin A (1999) Some thaumatin-like proteins hydrolyse polymeric β-1,3-glucans. Plant J 19:473–480CrossRefGoogle Scholar
  11. Guo J, Zhao X, Wang HL, Zheng LD (2016) Expression of the LePR5 gene from cherry tomato fruit induced by Cryptococcus laurentii and the analysis of LePR5 protein antifungal activity. Postharvest Biol Tecnol 111:337–344CrossRefGoogle Scholar
  12. Hamamouch N, Li C, Seo PJ, Park CM, Davis EL (2011) Expression of Arabidopsis pathogenesis-related genes during nematode infection. Mol Plant Pathol 12:355–364CrossRefGoogle Scholar
  13. Hayashi M, Shiro S, Kanamori H, Mori-Hosokawa S, Sasaki-Yamagata H, Sayama T, Nishioka M, Takahashi M, Ishimoto M, Katayose Y, Kaga A, Harada K, Kouchi H, Saeki Y, Umehara Y (2014) A thaumatin-like protein, Rj4, controls nodule symbiotic specificity in soybean. Plant Cell Physiol 55:1679–1689CrossRefGoogle Scholar
  14. Jiang W, Kong QS, Bie ZL (2014) Isolation and identification of the dominant pathogens causing root rot of grafted watermelon. In: 1st ISHS international symposium on vegetable grafting, Wuhan, p 65Google Scholar
  15. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefGoogle Scholar
  16. Lecomte C, Alabouvette C, Edel-Hermann V, Robert F, Steinberg C (2016) Biological control of ornamental plant diseases caused by Fusarium oxysporum: a review. Biol Control 101:17–30CrossRefGoogle Scholar
  17. Lee JM, Oda M (2003) Grafting of herbaceous vegetable and ornamental crops. Hortic Rev 28:61–124Google Scholar
  18. Léon-Kloosterziel KM, Verhagen BW, Keurentjes JJ, VanPelt JA, Rep M, VanLoon LC, Pieterse CM (2005) Colonization of the Arabidopsis rhizosphere by fluorescent Pseudomonas spp. activates a root-specific, ethylene-responsive PR-5 gene in the vascular bundle. Plant Mol Biol 57:731–748CrossRefGoogle Scholar
  19. Li PF, Ren RS, Yao XF, Xu JH, Babu B, Paret ML, Yang XP (2015) Identification and characterization of the causal agent of gummy stem blight from muskmelon and watermelon in East China. J Phytopathol 163:314–319CrossRefGoogle Scholar
  20. Liu JJ, Sturrock R, Ekramoddoullah AKM (2010) The superfamily of thaumatin-like proteins: its origin, evolution, and expression towards biological function. Plant Cell Rep 29:419–436CrossRefGoogle Scholar
  21. Livak KJ, Schmittgenm TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods 25:402–408CrossRefGoogle Scholar
  22. Mallón R, Valladares S, Corredoira E, Vieitez AM, Vidal N (2014) Overexpression of the chestnut CsTL1 gene coding for a thaumatin-like protein in somatic embryos of Quercus robur. Plant Cell Tissue Organ Cult 116:141–151CrossRefGoogle Scholar
  23. Martyn RD (1991) Resistance to Races 0, 1, and 2 of Fusarium wilt of watermelon in Citrullus sp. PI-296341-FR. HortScience 26:429–432Google Scholar
  24. Martyn RD (1996) Fusarium wilt of watermelon. In: Zither TA, Hopkins DL, Thomas CA (eds) Compendium of cucurbit diseases. The American Phytopathology Society, St. PaulGoogle Scholar
  25. Misra RC, Kamthan M, Kumar S, Ghosh S (2016) A thaumatin-like protein of Ocimum basilicum confers tolerance to fungal pathogen and abiotic stress in transgenic Arabidopsis. Sci Rep 6:25340CrossRefGoogle Scholar
  26. Narasimhan ML, Damsz B, Coca MA, Ibeas JI, Yun DJ, Pardo JM, Hasegawa PM, Bressan RA (2001) A plant defense response effector induces microbial apoptosis. Mol Cell 8:921–930CrossRefGoogle Scholar
  27. Narasimhan M, Coca M, Jin J, Yamauchi T, Ito Y, Kadowaki T, Kim KK, Pardo JM, Damsz B, Hasegawa PM, Yun DJ, Bressan RA (2005) Osmotin is a homolog of mammalian adiponectin and controls apoptosis in yeast through a homolog of mammalian adiponectin receptor. Mol Cell 17:171–180CrossRefGoogle Scholar
  28. Nicholas KB, Nicholas HB Jr, Deerfield DW (1997) GeneDoc: analysis and visualization of genetic variation. Embnew News 4:28–30Google Scholar
  29. Osmond RIW, Hrmova M, Fontaine F, Imberty A, Fincher GB (2001) Binding interactions between barley thaumatin-like proteins and (1,3)-β-d-glucans. Eur J Biochem 15:4190–4199CrossRefGoogle Scholar
  30. Parvatha Reddy P (2013) Pathogenesis-related proteins. In: Parvatha Reddy P (ed) Recent advances in crop protection. Springer, BengaluruCrossRefGoogle Scholar
  31. Ramos MV, de Oliveira RS, Pereira HM, Moreno FB, Lobo MD, Rebelo LM, Brandão-Neto J, de Sousa JS, Monteiro-Moreira AC, Freitas CD, Grangeiro TB (2015) Crystal structure of an antifungal osmotin-like protein from Calotropis procera and its effects on Fusarium solani spores, as revealed by atomic force microscopy: insights into the mechanism of action. Phytochemistry 119:5–18CrossRefGoogle Scholar
  32. Rather IA, Awasthi P, Mahajan V, Bedi YS, Vishwakarma RA, Gandhi SG (2015) Molecular cloning and functional characterization of an antifungal PR-5 protein from Ocimum basilicum. Gene 558:143–151CrossRefGoogle Scholar
  33. Rout E, Nanda S, Joshi RK (2016) Molecular characterization and heterologous expression of a pathogen induced PR5 gene from garlic (Allium sativum L.) conferring enhanced resistance to necrotrophic fungi. Eur J Plant Pathol 144:345–360CrossRefGoogle Scholar
  34. Sassa H, Ushijima K, Hirano H (2002) A pistil-specific thaumatin/PR5-like protein gene of Japanese pear (Pyrus serotina): sequence and promoter activity of the 50 region in transgenic tobacco. Plant Mol Biol 50:371–377CrossRefGoogle Scholar
  35. Singh NK, Kumar KRR, Kumar D, Shukla P, Kirti PB (2013) Characterization of a pathogen induced thaumatin-like protein gene AdTLP from Arachis diogoi, a wild peanut. PloS One 8:e83963CrossRefGoogle Scholar
  36. Singh S, Tripathi RK, Lemaux PG, Buchanan BB, Singh J (2017) Redox-dependent interaction between thaumatin-like protein and ß–glucan influences malting quality of barley. Proc Natl Acad Sci USA 114:7725–7730CrossRefGoogle Scholar
  37. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefGoogle Scholar
  38. Van Damme EJ, Charels D, Menu-Bouaouiche L, Proost P, Barre A, Rougé P, Peumans WJ (2002) Biochemical, molecular and structural analysis of multiple thaumatin-like proteins from the elderberry tree (Sambucus nigra L.). Planta 214:853–862 sCrossRefGoogle Scholar
  39. Velazhahan R, Datta SK, Muthukrishnan S (1999) The PR-5 family: thaumatin-like proteins in plants. In: Datta SK, Muthukrishnan S (eds) Pathogenesis-related proteins in plants. CRC Press, Boca RatonGoogle Scholar
  40. Wang QH, Li FG, Zhang X, Zhang YG, Hou YX, Zhang SR, Wu ZX (2011) Purification and characterization of a CKTLP protein from Cynanchum komarovii seed that confers antifungal activity. PloS One 6:e16930CrossRefGoogle Scholar
  41. Wang L, Yang LH, Zhang JX, Dong J, Yu J, Zhou J, Zhuge Q (2013) Cloning and characterization of a thaumatin-like protein gene PeTLP in Populus deltoides × P. euramericana cv. ‘Nanlin895’. Acta Physiol Plant 35:2985–2998CrossRefGoogle Scholar
  42. Wu HS, Raza W, Liu DY, Wu CL, Mao ZS, Xu YC, Shen QR (2008) Allelopathic impact of artificially applied coumarin on Fusarium oxysporum f.sp. niveum. World J Microbiol Biotechnol 24:1297–1304CrossRefGoogle Scholar
  43. Yin JL, Shackel NA, Zekry A, McGuinness PH, Richards C, Putten KV, Mccaughan GW, Eris GM, Bishop GA (2001) Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) for measurement of cytokine and growth factor mRNA expression with fluorogenic probes or SYBR Green I. Immunol Cell Biol 79:213–221CrossRefGoogle Scholar
  44. Yun DJ, Zhao Y, Pardo JM, Narasimhan ML, Damsz B, Lee H, Abad LR, D’Urzo MP, Hasegawa PM, Bressan RA (1997) Stress proteins on the yeast cell surface determine resistance to osmotin, a plant antifungal protein. Proc Natl Acad Sci USA 94:7082–7087CrossRefGoogle Scholar
  45. Zareie R, Melanson DL, Murphy PJ (2002) Isolation of fungal cell wall degrading proteins from barley (Hordeum vulgare L.) leaves infected with Rhynchosporium secalis. Mol Plant Microbe Interact 15:1031–1039CrossRefGoogle Scholar
  46. Zhang M, Yang XP, Xu JH, Liu G, Yao XF, Li PF (2015) Physiological responses of watermelon grafted onto Bottle Gourd to Fusarium oxysporum f.sp. niveum infection. Acta Hortic 1086:107–111CrossRefGoogle Scholar
  47. Zhang M, Xu JH, Liu G, Yao XF, Ren RS, Yang XP (2017) Proteomic analysis of responsive root proteins of Fusarium oxysporum-infected watermelon seedlings. Plant Soil. CrossRefPubMedPubMedCentralGoogle Scholar
  48. Zhou XG, Everts KL, Bruton BD (2010) Race 3, a new and highly virulent race of Fusarium oxysporum f. sp. niveum causing Fusarium wilt in watermelon. Plant Dis 94:92–98CrossRefGoogle Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2018

Authors and Affiliations

  • Man Zhang
    • 1
  • Jinhua Xu
    • 1
    Email author
  • Guang Liu
    • 1
  • Xingping Yang
    • 1
  1. 1.Institute of VegetableJiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic ImprovementNanjingChina

Personalised recommendations