Advertisement

Acta Physiologiae Plantarum

, 40:166 | Cite as

Optimization of culturing conditions for production of somatic embryos and lignins of Schisandra chinensis (Turcz.) Baill

  • Dan Sun
  • Zhenxing wang
  • Yunfei Yu
  • Changyu Li
  • Hongyan Qin
  • Peilei Xu
  • Ying Zhao
  • Yingxue Liu
  • Yiming Yang
  • Shutian Fan
  • Jun Ai
Original Article
  • 69 Downloads

Abstract

Schisandra chinensis (Turcz.) Baill. is a valuable medicinal plant species increasingly used in phytotherapy worldwide. This study systematically detected the lignin content and production during somatic embryogenesis of S. chinensis. The effect of various culture parameters on biomass accumulation and lignin production were also examined to optimize the accumulation of lignins in SEs in bioreactors, including the culture method, inoculum density, aeration volume and photoperiod. An inoculum density of 20 g L− 1 embryogenic calli enhanced production of lignin, while 30 g L− 1 embryogenic calli increased the biomass of somatic embryos. During somatic embryo induction, an aeration volume of 0.2 vvm and photoperiod of 16 h day− 1 were found to be optimal for biomass accumulation and lignin production. An approximately threefold increase in the biomass production rate and a fourfold increase in the total lignin production rate in SEs were achieved in bioreactors than on solid medium. The present study indicated, therefore, that the culturing of S. chinensis somatic embryos in bioreactors is an effective method for the industrialized production of lignin in vitro.

Keywords

Schisandra chinensis (Turcz.) Baill. Bioreactor culture Inoculum density Aeration volume Photoperiod Lignin 

Abbreviations

SEs

Somatic embryos

MS

Murashige and Skoog

2, 4-D

2, 4-Dichlorophenoxyacetic acid

TDZ

Thidiazuron

Zt

Zeatin

FW

Fresh weight

DW

Dry weight

Notes

Acknowledgements

This work was supported by the Project of Science and Technology Department of Jilin Province [No. 20150204064YY] and the Project of Science and Technology Department of Jilin Province [No. 20160209004YY].

References

  1. Anjusha S, Gangaprasad A (2017) Callus culture and in vitro production of anthraquinone in Gynochthodes umbellata (L.) Razafim. & B. Bremer (Rubiaceae). Indus Crops Prod 95:608–614.  https://doi.org/10.1016/j.indcrop.2016.11.021 CrossRefGoogle Scholar
  2. Baque MA, Moh SH, Lee EJ, Zhong JJ, Paek KY (2012) Production of biomass and useful compounds from adventitious roots of high-value added medicinal plants using bioreactor. Biotechnol Adv 30:1255–1267.  https://doi.org/10.1016/j.biotechadv.2011.11.004 CrossRefPubMedGoogle Scholar
  3. Chattopadhyay S, Farkya S, Srivatava AK, Bisaria VS (2002) Bioprocess considerations for production of secondary metabolites by plant cell suspension cultures. Biotechnol Bioprocess Eng 7:138–149.  https://doi.org/10.1007/978-94-017-0203-4_16 CrossRefGoogle Scholar
  4. Ekiert RJ, Szopa A, Ekiert H, Krzek J, Dzik E (2013) Analysis of lignins in Schisandra chinensis fruits, leaves, biomasses from in vitro cultures and food supplements. J Funct Foods 5:1576–1581.  https://doi.org/10.1016/j.jff.2013.06.008 CrossRefGoogle Scholar
  5. Jeong JA, Wu CH, Murthy HN, Hahn EJ, Paek KY (2009) Application of an airlift bioreactor system for the production of adventitious root biomass and caffeic acid derivatives of Echinacea purpurea. Biotechnol Bioprocess Eng 14:91–98.  https://doi.org/10.1007/s12257-007-0142-5 CrossRefGoogle Scholar
  6. Jwa CS, Yang YT, Koh JS (2000) Changes in free sugars, organic acids, free amino acids and minerals by harvest time and parts of Acanthopanax koreanum. J Korean Soc Agric Chem Biotechnol 43:106–109Google Scholar
  7. Lee EJ, Moh SH, Paek KY (2011) Influence of inoculum density and aeration volume on biomass and bioactive compound production in bulb-type bubble bioreactor cultures of Eleutherococcus koreanum Nakai. Biores Technol 102:7165–7170.  https://doi.org/10.1016/j.biortech.2011.04.076 CrossRefGoogle Scholar
  8. Liu CZ, Guo C, Wang YC, Ouyang F (2002) Effect of light irradiation on hairy root growth and artemisinin biosynthesis of Artemisia annu L. Process Biochem 38:581–585.  https://doi.org/10.1016/S0032-9592(02)00165-6 CrossRefGoogle Scholar
  9. Lu Y, Chen DF (2009) Analysis of Schisandra chinensis and Schisandra sphenanthera. J Chromatogr A 1216: 1980–1990.  https://doi.org/10.1016/j.chroma.2008.09.070 CrossRefPubMedGoogle Scholar
  10. Luczkiewicz M, Zarate R, Migas WD, Migas P, Verpoorte R (2002) Production of pulchelin E in hairy roots, callus and suspension cultures of Rudbeckia hirta L. Plant Sci 163:91–100.  https://doi.org/10.1016/S0168-9452(02)00065-1 CrossRefGoogle Scholar
  11. Mišić D, Šiler B, Marijana S, Djurickovic MS, Živković JN, Jovanović V, Giba Z (2013) Secoiridoid glycosides production by Centaurium maritimum (L.) Fritch hairy root cultures in temporary immersion bioreactor. Process Biochem 48:1587–1591.  https://doi.org/10.1016/j.procbio.2013.07.015 CrossRefGoogle Scholar
  12. Mocan A, Schafberg M, Crișan G, Rohn S (2016) Determination of lignins and phenolic components of Schisandra chinensis (Turcz.) Baill. using HPLC-ESI-ToF-MS and HPLC-online TEAC: contribution of individual components to overall antioxidant activity and comparison with traditional antioxidant assays. J Funct Foods 24:579–594.  https://doi.org/10.1016/j.jff.2016.05.007 CrossRefGoogle Scholar
  13. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497.  https://doi.org/10.1111/j.1399-3054.1962.tb08052.x CrossRefGoogle Scholar
  14. Murthy HN, Lee EJ, Paek KY (2014) Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tissue Organ Cult 118:1–16.  https://doi.org/10.1007/s11240-014-0467-7 CrossRefGoogle Scholar
  15. Opletal L, Sovová H, Bártlová M (2004) Dibenzo[a,c]cyclooctadiene lignins of the genus Schisandra: importance, isolation and determination. J Chromatogr B 812:357–371.  https://doi.org/10.1016/j.jchromb.2004.07.040 CrossRefGoogle Scholar
  16. Park SY, Ahn JK, Lee WY, Murthy HN, Paek KY (2005) Mass production of Eleutherococcus koreanum plantlets via somatic embryogenesis from root cultures and accumulation of eleutherosides in regenerants. Plant Sci 168:1221–1225.  https://doi.org/10.1016/j.plantsci.2004.12.023 CrossRefGoogle Scholar
  17. Rajesh M, Sivanandhan G, Subramanyam K, Kapildev G, Jaganath B, Kasthurirengan S, Manickavasagam M, Ganapathi A (2014) Establishment of somatic embryogenesis and podophyllotoxin production in liquid shake cultures of Podophyllum hexandrum Royle. Ind Crops Prod 60:66–74.  https://doi.org/10.1016/j.indcrop.2014.05.046 CrossRefGoogle Scholar
  18. Rao SR, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101–153.  https://doi.org/10.1016/S0734-9750(02)00007-1 CrossRefPubMedGoogle Scholar
  19. Sivakumar G (2006) Bioreactor technology: a novel industrial tool for high-tech production of bioactive molecules and biopharmaceuticals from plant roots. Biotechnol J 1:1419–1427.  https://doi.org/10.1002/biot.200600117 CrossRefPubMedGoogle Scholar
  20. Sivakumar G, Yu KW, Paek KY (2005) Production of biomass and ginsenosides from adventitious roots of Panax ginseng in bioreactor cultures. Eng Life Sci 5:333–342.  https://doi.org/10.1002/elsc.200520085 CrossRefGoogle Scholar
  21. Sun D, Li Q, Li HB, Ai J, Qin HY, Piao ZY (2015) Plantlet regeneration through somatic embryogenesis in Schisandra chinensis (Turcz.) Baill. and analysis of genetic stability of regenerated plants by SRAP markers. Bangladesh J Bot 44:881–888Google Scholar
  22. Sun D, Li CY, Q HY, Z QT, Ai YYM J (2016) Somatic embryos cultures of Vitis amurensis Rupr. in air-lift bioreactors for the production of biomass and resveratrol. J Plant Biol 59:427–434.  https://doi.org/10.1007/s12374-016-0022-7 CrossRefGoogle Scholar
  23. Szopa A, Ekiert H (2011) Lignins in Schisandra chinensis in vitro cultures. Pharmazie 66:633–634.  https://doi.org/10.1691/ph.2011.1520 CrossRefPubMedGoogle Scholar
  24. Szopa A, Ekiert R, Ekiert H (2017) Current knowledge of Schisandra chinensis (Turcz.) Baill. (Chinese magnolia vine) as a medicinal plant species: a review on the bioactive components, pharmacological properties, analytical and biotechnological studies. Phytochem Rev 16(2):195–218.  https://doi.org/10.1007/s11101-016-9470-4 CrossRefPubMedGoogle Scholar
  25. Thanh NT, Murthy HN, Paek KY (2014) Optimization of ginseng cell culture in airlift bioreactors and developing the large-scale production system. Ind Crops Prod 60:343–348.  https://doi.org/10.1691/ph.2011.1520 CrossRefGoogle Scholar
  26. Winarto B, Rachmawati F, Santi A, Jaime A, Silva TD (2013) Mass propagation of Dendrobium ‘Zahra FR 62’, a new hybrid used for cut flowers, using bioreactor culture. Sci Hortic 161:170–180.  https://doi.org/10.1016/j.scienta.2013.06.014 CrossRefGoogle Scholar
  27. Wu CH, Dewir YH, Hahn EJ, Paek KY (2006) Optimization of culturing conditions for the production of biomass and phenolics from adventitious roots of Echinacea angustifolia. J Plant Biol 49:193–199.  https://doi.org/10.17660/ActaHortic.2007.764.24 CrossRefGoogle Scholar
  28. Yang F, Wei NN, Gao R, Piao XC, Lian ML (2015) Effect of several medium factors on polysaccharide and alkaloid accumulation in protocorm-like bodies of Dendrobium candidum during bioreactor culture. Acta Physiol Plant 37:94–103.  https://doi.org/10.1007/s11738-015-1843-6 CrossRefGoogle Scholar
  29. Yu KW, Murthy HN, Hahn EJ, Paek KY (2005) Ginsenoside production by hairyroot cultures of Panax ginseng: influence of temperature and light quality. Biochem Eng J 23:53–56.  https://doi.org/10.1016/j.bej.2004.07.001 CrossRefGoogle Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2018

Authors and Affiliations

  • Dan Sun
    • 1
    • 2
  • Zhenxing wang
    • 1
  • Yunfei Yu
    • 1
  • Changyu Li
    • 1
  • Hongyan Qin
    • 1
  • Peilei Xu
    • 1
  • Ying Zhao
    • 1
  • Yingxue Liu
    • 1
  • Yiming Yang
    • 1
  • Shutian Fan
    • 1
  • Jun Ai
    • 1
  1. 1.Institute of Special Wild Economic Animals and Plants of CAASChangchunChina
  2. 2.College of Horticulture, Jilin Agricultural UniversityChangchunChina

Personalised recommendations