Advertisement

Acta Physiologiae Plantarum

, 40:168 | Cite as

De novo sequencing of the Freesia hybrida petal transcriptome to discover putative anthocyanin biosynthetic genes and develop EST–SSR markers

  • Dong-Qin Tang
  • Yi Sun
  • Xi Li
  • Zi Yan
  • Yi-Min Shi
Original Article
  • 74 Downloads

Abstract

Freesia is an important bulb flower. Based on Illumina platform, the transcriptome profiling of Freesia hybrida ‘Pink Passion’ was conducted by de novo sequencing method in this study. The goal of this study is to reveal basic information and provide data on regulatory mechanism of flower color formation in freesia. Totally, 49,503,460 short reads, corresponding to total 4.46 GB nucleotides, were yielded. These short reads were then classified into 74,192 unigenes, of which 42,934 were annotated in several databases, including Nr, Nt, Swiss-Prot, KEGG, COG, and GO. A total of 43,594 coding sequences were obtained and 25,409 unigenes were allocated to 128 KEGG pathways. The “metabolic pathways” (6642 counts, 26.14%) were present as the largest category. The freesia transcriptome results revealed 205 unigenes involved in the flavonoid biosynthesis pathway and 18 unigenes in anthocyanin biosynthesis pathway. Then, 13 genes related to anthocyanin biosynthesis were identified, including 8 up-stream genes and 5 down-stream genes. MISA software identified 10,249 simple sequence repeats (SSR) as putative molecular markers, from which 4996 primer pairs were designed. Then, over 10,249 motifs were identified, and the most common motif was AG/CT (31.18%), followed by A/T and AAG/CTT. One hundred and fifty SSR primer pairs for loci were further synthesized and tested. The primers for 62 SSR loci amplified reproducible amplicons. Thirty-six polymorphic EST–SSR markers were then chosen to screen the polymorphisms among 16 freesia accessions. The genetic relationships among the 16 accessions were then assessed by the cluster analysis based on these markers. Surprisingly, the 16 freesia accessions cannot be grouped simply by an individual characteristic, indicating a potential complex genetic relationship of the tested freesias. In conclusion, this study is the first freesia transcriptome characterization by large-scale sequencing. The findings provide valuable information for germplasm characterization, genetic diversity and relationship analysis, and marker-assisted breeding in Freesia.

Keywords

Freesia hybrida De novo transcriptome Anthocyanin biosynthesis EST–SSRs 

Notes

Acknowledgements

This study was financially supported by the Agricultural Commission of Shanghai, China, under Grant Hu Nong Ke Gong Zhi (2014) no. 1–2. The authors would like to thank Prof. J-S Pan for helping us in the SSR experiments, and also thank Dr. D. Zhang and Dr. D-F Liu for their kind suggestions to revise the paper.

Supplementary material

11738_2018_2739_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (DOCX 16 KB)
11738_2018_2739_MOESM2_ESM.xls (906 kb)
Supplementary material 2 (XLS 905 KB)
11738_2018_2739_MOESM3_ESM.xlsx (838 kb)
Supplementary material 3 (XLSX 837 KB)
11738_2018_2739_MOESM4_ESM.xlsx (141 kb)
Supplementary material 4 (XLSX 140 KB)
11738_2018_2739_MOESM5_ESM.xlsx (45 kb)
Supplementary material 5 (XLSX 45 KB)
11738_2018_2739_MOESM6_ESM.txt (17 kb)
Supplementary material 6 (TXT 17 KB)
11738_2018_2739_MOESM7_ESM.xlsx (412 kb)
Supplementary material 7 (XLSX 412 KB)
11738_2018_2739_MOESM8_ESM.xls (1.8 mb)
Supplementary material 8 (XLS 1861 KB)
11738_2018_2739_MOESM9_ESM.txt (40 kb)
Supplementary material 9 (TXT 39 KB)

References

  1. Ahn JH, Kim J-S, Kim S, Soh HY, Shin H, Jang H, Ryu JH, Kim A, Yun K-Y, Kim S (2015) De novo transcriptome analysis to identify anthocyanin biosynthesis genes responsible for tissue-specific pigmentation in zoysiagrass (Zoysia japonica Steud.). PloS One 10:e0124497CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ashraf M, Foolad MR (2013) Crop breeding for salt tolerance in the era of molecular markers and marker-assisted selection. Plant Breed 132:10–20CrossRefGoogle Scholar
  3. Baba SA, Mohiuddin T, Basu S, Swarnkar MK, Malik AH, Wani ZA, Abbas N, Singh AK, Ashraf N (2015) Comprehensive transcriptome analysis of Crocus sativus for discovery and expression of genes involved in apocarotenoid biosynthesis. BMC Genom 16:1CrossRefGoogle Scholar
  4. Ballerini ES, Mockaitis K, Arnold ML (2013) Transcriptome sequencing and phylogenetic analysis of floral and leaf MIKC C MADS-box and R2R3 MYB transcription factors from the monocot Iris fulva. Gene 531:337–346CrossRefPubMedGoogle Scholar
  5. Buer CS, Imin N, Djordjevic MA (2010) Flavonoids: new roles for old molecules. J Integr Plant Biol 52:98–111CrossRefPubMedGoogle Scholar
  6. Chen H, Liu L, Wang L, Wang S, Somta P, Cheng X (2015) Development and validation of EST–SSR markers from the transcriptome of adzuki bean (Vigna angularis). PloS One 10:e0131939CrossRefPubMedPubMedCentralGoogle Scholar
  7. Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676CrossRefPubMedPubMedCentralGoogle Scholar
  8. de Vetten N, ter Horst J, van Schaik HP, de Boer A, Mol J, Koes R (1999) A cytochrome b5 is required for full activity of flavonoid 3′, 5′-hydroxylase, a cytochrome P450 involved in the formation of blue flower colors. PNAS 96:778–783CrossRefPubMedGoogle Scholar
  9. Desalegne BA, Mohammed S, Dagne K, Timko MP (2016) Assessment of genetic diversity in Ethiopian cowpea [Vigna unguiculata (L.) Walp.] germplasm using simple sequence repeat markers. Plant Mol Biol Reporter:1–15Google Scholar
  10. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652CrossRefPubMedPubMedCentralGoogle Scholar
  11. Grotewold E (2006a) The genetics and biochemistry of floral pigments. Ann Rev Plant Biol 57:761–780CrossRefGoogle Scholar
  12. Grotewold E (2006b) The science of flavonoids. Springer, New YorkCrossRefGoogle Scholar
  13. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M (2013) De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512CrossRefPubMedGoogle Scholar
  14. Li H, Dong Y, Yang J, Liu X, Wang Y, Yao N, Guan L, Wang N, Wu J, Li X (2012) De novo transcriptome of safflower and the identification of putative genes for oleosin and the biosynthesis of flavonoids. PloS One 7:e30987CrossRefPubMedPubMedCentralGoogle Scholar
  15. Li X, Wang C, Cheng J, Zhang J, da Silva JAT, Liu X, Duan X, Li T, Sun H (2014) Transcriptome analysis of carbohydrate metabolism during bulblet formation and development in Lilium davidii var unicolor. BMC Plant Biol 14:1CrossRefGoogle Scholar
  16. Li W, Liu Y, Zeng S, Xiao G, Wang G, Wang Y, Peng M, Huang H (2015) Gene expression profiling of development and anthocyanin accumulation in kiwifruit (Actinidia chinensis) based on transcriptome sequencing. PloS One 10:e0136439CrossRefPubMedPubMedCentralGoogle Scholar
  17. Long Y, Wang Y, Wu S, Wang J, Tian X, Pei X (2015) De novo assembly of transcriptome sequencing in Caragana korshinskii Kom. and characterization of EST–SSR markers. PloS One 10:e0115805CrossRefPubMedPubMedCentralGoogle Scholar
  18. Martin JA, Wang Z (2011) Next-generation transcriptome assembly. Nat Rev Genet 12:671–682CrossRefPubMedPubMedCentralGoogle Scholar
  19. Miao Y, Zhu Z, Guo Q, Zhu Y, Yang X, Sun Y (2016) Transcriptome analysis of differentially expressed genes provides insight into stolon formation in Tulipa edulis. Front Plant Sci 7:409PubMedPubMedCentralGoogle Scholar
  20. Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with non repetitive DNA in plant genomes. Nat Genet 30:194–200CrossRefPubMedGoogle Scholar
  21. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35:W182–W185CrossRefPubMedPubMedCentralGoogle Scholar
  22. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-SEq. Nat Methods 5:621–628CrossRefPubMedPubMedCentralGoogle Scholar
  23. Onda Y, Mochida K, Yoshida T, Sakurai T, Seymour RS, Umekawa Y, Pirintsos SA, Shinozaki K, Ito K (2015) Transcriptome analysis of thermogenic Arum concinnatum reveals the molecular components of floral scent production. Sci Rep 5:8753CrossRefPubMedPubMedCentralGoogle Scholar
  24. Parchman TL, Geist KS, Grahnen JA, Benkman CW, Buerkle CA (2010) Transcriptome sequencing in an ecologically important tree species: assembly, annotation, and marker discovery. BMC Genom 11:1CrossRefGoogle Scholar
  25. Petroni K, Tonelli C (2011) Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Sci 181:219–229CrossRefPubMedGoogle Scholar
  26. Qin W, Lin Y (1995) The research of Freesia. Shanghai Science and Technology Press, ShanghaiGoogle Scholar
  27. Spikman G (1989) Development and ethylene production of buds and florets of cut freesia inflorescences as influenced by silver thiosulphate, aminoethoxyvinylglycine and sucrose. Sci Horticult 39:73–81CrossRefGoogle Scholar
  28. Sun C, Li Y, Wu Q, Luo H, Sun Y, Song J, Lui EM, Chen S (2010) De novo sequencing and analysis of the American ginseng root transcriptome using a GS FLX titanium platform to discover putative genes involved in ginsenoside biosynthesis. BMC Genom 11:262CrossRefGoogle Scholar
  29. Sun W, Meng X, Liang L, Jiang W, Huang Y, He J, Hu H, Almqvist J, Gao X, Wang L (2015) Molecular and biochemical analysis of chalcone synthase from Freesia hybrid in flavonoid biosynthetic pathway. PloS One 10:e0119054CrossRefPubMedPubMedCentralGoogle Scholar
  30. Sun W, Liang L, Meng X, Li Y, Gao F, Liu X, Wang S, Gao X, Wang L (2016) Biochemical and molecular characterization of a flavonoid 3-O-glycosyltransferase responsible for anthocyanins and flavonols biosynthesis in Freesia hybrida. Front Plant Sci 7:410PubMedPubMedCentralGoogle Scholar
  31. Taylor LP, and Grotewold E (2005) Flavonoids as developmental regulators. Curr Opin Plant Biol 8:317–323CrossRefPubMedGoogle Scholar
  32. Tian S, Gu C, Liu L, Zhu X, Zhao Y, Huang S (2015) transcriptome profiling of louisiana iris root and identification of genes involved in lead-stress response. Int J Mol Sci 16:28087–28097CrossRefPubMedPubMedCentralGoogle Scholar
  33. Wang L (2007) Freesia. Flower breeding and genetics. Springer, Berlin, pp 665–693Google Scholar
  34. Wang Z, Fang B, Chen J, Zhang X, Luo Z, Huang L, Chen X, Li Y (2010) De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweetpotato (Ipomoea batatas). BMC Genom 11:1CrossRefGoogle Scholar
  35. Wang S, Zhang Z, Jiang N, Zhang G, Sha B, Yang S, Chen J (2014) SSR information in transcriptome of Pinellia ternata. J Chin Med Mater 37:1566–1569Google Scholar
  36. Wei Z, Sun Z, Cui B, Zhang Q, Xiong M, Wang X, Zhou D (2016) Transcriptome analysis of colored calla lily (Zantedeschia rehmannii Engl.) by Illumina sequencing: de novo assembly, annotation and EST–SSR marker development. Peer J 4:e2378CrossRefPubMedGoogle Scholar
  37. Wu C-W, Zhou L-Y, Wang X-L, Song H-S, Tang D-Q, Liu Q-L (2009) ISSR analysis of genetic diversity in Freesia refracta germplasm [J]. Bull Bot Res 3:021Google Scholar
  38. Wu Q, Wu J, Li S-S, Zhang H-J, Feng C-Y, Yin D-D, Wu R-Y, Wang L-S (2016) Transcriptome sequencing and metabolite analysis for revealing the blue flower formation in waterlily. BMC Genom 17:897CrossRefGoogle Scholar
  39. Xu Y-Q, Yuan Y, Tao X-H, Yang J, Shi Y-M, Tang D-Q (2016) Main anthocyanin profiles in petals of Freesia hybrid. Bull Bot Res 36:184–189Google Scholar
  40. Yamazaki M, Yamagishi E, Gong Z, Fukuchi-Mizutani M, Fukui Y, Tanaka Y, Kusumi T, Yamaguchi M, Saito K (2002) Two flavonoid glucosyltransferases from Petunia hybrida: molecular cloning, biochemical properties and developmentally regulated expression. Plant Mol Biol 48:401–411CrossRefPubMedGoogle Scholar
  41. Yan X, Zhang X, Lu M, He Y, An H (2015) De novo sequencing analysis of the Rosa roxburghii fruit transcriptome reveals putative ascorbate biosynthetic genes and EST–SSR markers. Gene 561:54–62CrossRefPubMedGoogle Scholar
  42. Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, and Bolund L (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:W293–W297CrossRefPubMedPubMedCentralGoogle Scholar
  43. Zhang H, Wei L, Miao H, Zhang T, Wang C (2012) Development and validation of genic-SSR markers in sesame by RNA-sEq. BMC Genom 13:1CrossRefGoogle Scholar
  44. Zhang G-H, Ma C-H, Zhang J-J, Chen J-W, Tang Q-Y, He M-H, Xu X-Z, Jiang N-H, Yang S-C (2015a) Transcriptome analysis of Panax vietnamensis var. fuscidicus discovers putative ocotillol-type ginsenosides biosynthesis genes and genetic markers. BMC Genom 16:1CrossRefGoogle Scholar
  45. Zhang M-f, Jiang L-m, Zhang D-m, Jia G-x (2015b) De novo transcriptome characterization of Lilium ‘Sorbonne’and key enzymes related to the flavonoid biosynthesis. Mol Genet Genom 290:399–412CrossRefGoogle Scholar
  46. Zheng X, Pan C, Diao Y, You Y, Yang C, Hu Z (2013) Development of microsatellite markers by transcriptome sequencing in two species of Amorphophallus (Araceae). BMC Genom 14:1CrossRefGoogle Scholar
  47. Zhou L-Y, Wu C-W, Tang D-Q, Song H-S, Liu Q-L (2008) Optimization for ISSR-PCR system of Freesia refracta Klatt through orthogonal design [J]. Bull Bot Res 4:004Google Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2018

Authors and Affiliations

  • Dong-Qin Tang
    • 1
  • Yi Sun
    • 1
  • Xi Li
    • 1
  • Zi Yan
    • 1
  • Yi-Min Shi
    • 1
  1. 1.Department of Landscape ArchitectureShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations