Acta Physiologiae Plantarum

, 40:161 | Cite as

Transcriptomic analysis and dynamic expression of genes reveal flavonoid synthesis in Scutellaria viscidula

  • Chengke BaiEmail author
  • Jun Xu
  • Bo Cao
  • Xia Li
  • Guishuang Li
Original Article


Scutellaria viscidula Bunge (Labiatae), a perennial herb, is an important medicinal plant that possesses broad pharmacological actions. S. viscidula contains flavonoids with good bioactivities (e.g., baicalin, wogonoside, baicalein, and wogonin) mainly in its dry root, which is used as alternative to Scutellaria baicalensis in the north of China. Furthermore, S. viscidula also has flavones with interesting diverged structures such as panicolin, viscidulin I, viscidulin II, and viscidulin III. Tracing the dynamic process of gene expression will help reveal the mechanism of flavonoid synthesis in S. viscidula, as well as the 4′-deoxyflavone biosynthesis in S. baicalensis. One way is to generate and analyze the expressed sequence tags (ESTs). However, little is known on the transcriptome information of S. viscidula, particularly the key genes involved in flavonoid biosynthesis. In this study, we conducted de novo transcriptome analysis of S. viscidula and obtained 42,310,834 reads and 40,052 unigenes, respectively. We revealed 177 genes relating to flavonoid biosynthesis, where 23 key enzyme-encoding genes including CHS, CHI, F3H, PAL, and 4CL were annotated. Furthermore, we investigated the dynamic expression of SvCHS, SvCHI, SvF3H, SvMYB2, and SvbHLH of stem, root, and leaf of S. viscidula in May, July, and September. Our results showed that these key genes had important regulatory function and exhibited positive correlation with total flavonoid content in different growth stages of S. viscidula. Collectively, this study provides high-quality transcriptome data of S. viscidula, and further gives significant information for understanding the molecular mechanism of gene expression and active ingredients in Scutellaria plants.


Medicinal plant Scutellaria viscidula Transcriptome Flavonoid Unigene Gene expression 



We would like to thank the reviewers, whose work greatly improve the manuscript. We thank Dr. Yinghua Zha for her helpful revision on the manuscript. This work was supported by the Innovation Team Project of Breeding and Standardized Production of New Varieties of Traditional Chinese Medicine in Fundamental Research Funds of the Central Universities [GK201801008 to CKB]; the National Natural Science Foundation of China [31100241 to CKB]; and the Fundamental Research Funds for the Central Universities [GK201503046 to GSL].

Compliance with ethical standards

Conflict of interest

The authors declared that no competing interests exist.

Supplementary material

11738_2018_2733_MOESM1_ESM.docx (89 kb)
Supplementary material 1 (DOCX 89 KB)
11738_2018_2733_MOESM2_ESM.docx (186 kb)
Supplementary material 2 (DOCX 185 KB)
11738_2018_2733_MOESM3_ESM.docx (179 kb)
Supplementary material 3 (DOCX 178 KB)
11738_2018_2733_MOESM4_ESM.docx (175 kb)
Supplementary material 4 (DOCX 174 KB)
11738_2018_2733_MOESM5_ESM.docx (124 kb)
Supplementary material 5 (DOCX 124 KB)
11738_2018_2733_MOESM6_ESM.xls (4.8 mb)
Supplementary material 6 (XLS 4942 KB)
11738_2018_2733_MOESM7_ESM.xls (1.8 mb)
Supplementary material 7 (XLS 1793 KB)
11738_2018_2733_MOESM8_ESM.xls (1.1 mb)
Supplementary material 8 (XLS 1101 KB)
11738_2018_2733_MOESM9_ESM.xls (2.4 mb)
Supplementary material 9 (XLS 2477 KB)
11738_2018_2733_MOESM10_ESM.xls (3.8 mb)
Supplementary material 10 (XLS 3928 KB)
11738_2018_2733_MOESM11_ESM.xls (210 kb)
Supplementary material 11 (XLS 210 KB)
11738_2018_2733_MOESM12_ESM.xls (32 kb)
Supplementary material 12 (XLS 31 KB)


  1. Balmer D, Papajewski DV, Planchamp C, Glauser G, Mauch-Mani B (2013) Induced resistance in maize is based on organ-specific defence responses. Plant J 74:213–225CrossRefPubMedGoogle Scholar
  2. Baudry A, Heim MA, Dubreucq B, Caboche M, Weisshaar B, Lepiniec L (2004) TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J 39:366–380CrossRefPubMedGoogle Scholar
  3. Baudry A, Caboche M, Lepiniec L (2006) TT8 controls its own expression in a feedback regulation involving TTG1 and homologous MYB and bHLH factors, allowing a strong and cell-specific accumulation of flavonoids in Arabidopsis thaliana. Plant J 46:768–779CrossRefPubMedGoogle Scholar
  4. Chen J, Hou K, Qin P, Liu H, Yi B, Yang W, Wu W (2014) RNA-seq for gene identification and transcript profiling of three Stevia rebaudiana genotypes. BMC Genom 15:571CrossRefGoogle Scholar
  5. Cipriani G, Lot G, Huang WG, Marrazzo MT, Peterlunger E, Testolin R (1999) AC/GT and AG/CT microsatellite repeats in peach [Prunus persica (L) Batsch]: isolation, characterization and cross-species amplification in Prunus. Theor Appl Genet 99:65–72CrossRefGoogle Scholar
  6. Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210CrossRefPubMedPubMedCentralGoogle Scholar
  7. Ferreyra MLF, Rius S, Casati P (2012) Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front Plant Sci 3:222Google Scholar
  8. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, Federica P, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat Biotechnol 29:644–652CrossRefPubMedPubMedCentralGoogle Scholar
  9. Grotewold E, Chamberlin M, Snook M, Siame B, Butler L, Swenson J, Maddock S, Clairb GS, Bowen B (1998) Engineering secondary metabolism in maize cells by ectopic expression of transcription factors. Plant Cell 10:721–740PubMedPubMedCentralGoogle Scholar
  10. Guilford P, Prakash S, Zhu JM, Rikkerink E, Gardiner S, Bassett H, Forster R (1997) Microsatellites in Malus X domestica (apple): abundance, polymorphism and cultivar identification. Theor Appl Genet 94:249–254CrossRefGoogle Scholar
  11. Guo L, Lei CK, Yang FL, Duan CY, Bai CK (2016) Similarity and diversity evaluation of bioactive ingredients in S. baicalensis and S. viscidula by HPLC. Northwest Pharm J 31:115–118Google Scholar
  12. Hichri I, Heppel SC, Pillet J, Léon C, Czemmel S, Delrot S, Lauvergeat V, Bogs J (2010) The basic helix-loop-helix transcription factor MYC1 is involved in the regulation of the flavonoid biosynthesis pathway in grapevine. Mol Plant 3:509–523CrossRefPubMedGoogle Scholar
  13. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30CrossRefPubMedPubMedCentralGoogle Scholar
  14. Koes RE, Quattrocchio F, Mol JNM (1994) The flavonoid biosynthetic pathway in plants: function and evolution. Bioessays 16:123–132CrossRefGoogle Scholar
  15. Krumholz MR, Klein RI, McKee CF, Offner SSR, Cunningham AJ (2009) The formation of massive star systems by accretion. Science 323:754–757CrossRefPubMedGoogle Scholar
  16. Larbat R, Bot JL, Bourgaud F, Robin C, Adamowicz S (2012) Organ-specific responses of tomato growth and phenolic metabolism to nitrate limitation. Plant Biol 14:760–769CrossRefPubMedGoogle Scholar
  17. Lei W, Tang SH, Luo KM, Sun M (2010) Molecular cloning and expression profiling of a chalcone synthase gene from hairy root cultures of Scutellaria viscidula Bunge. Genet Mol Biol 33:285–291CrossRefPubMedPubMedCentralGoogle Scholar
  18. Liu HO (2016) Studies on the chemical components and biological activity of Scutellaria amoena Wright CH. Dissertation, Yunnan University of Traditional Chinese Medicine, ChinaGoogle Scholar
  19. Liu J, Hou J, Jiang C, Li G, Lu H, Meng FY, Shi LC (2015) Deep sequencing of the Scutellaria baicalensis Georgi transcriptome reveals flavonoid biosynthetic profiling and organ-specific gene expression. PloS One 10:e0136397CrossRefPubMedPubMedCentralGoogle Scholar
  20. Muir SR, Collins GJ, Robinson S, Hughes S, Bovy A, Ric De Vos CH, van Tunen AJ, Verhoeyen ME (2001) Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nat Biotechnol 19:470–474CrossRefPubMedGoogle Scholar
  21. Shang X, He X, He X, Li M, Zhang R, Fan P, Zhang Q, Jia Z (2010) The genus Scutellaria an ethnopharmacological and phytochemical review. J Ethnopharmacol 128:279–313CrossRefPubMedGoogle Scholar
  22. Sheehan H, Moser M, Klahre U, Korinna E, Alexandre DO, Therese M, Sabine M, Michiel V, Loreta F, Cris K (2016) MYB-FL controls gain and loss of floral UV absorbance, a key trait affecting pollinator preference and reproductive isolation. Nat Genet 48:159–166CrossRefPubMedGoogle Scholar
  23. Vrancken K, Holtappels M, Schoofs H, Deckers T, Treutter D, Valcke R (2013) Erwinia amylovora affects the phenylpropanoid-flavonoid pathway in mature leaves of Pyruscommunis cv. Conférence. Plant Physiol Biochem 72:134–144CrossRefPubMedGoogle Scholar
  24. Wang N, Xu H, Jiang S, Zhang Z, Lu N, Qiu H, Qu C, Wang Y, Wu S, Chen X (2017) MYB12 and MYB22 play essential roles in proanthocyanidin and flavonol synthesis in red-fleshed apple (Malus sieversii f. niedzwetzkyana). Plant J 90:276–292CrossRefPubMedGoogle Scholar
  25. Xu W, Dubos C, Lepiniec L (2015) Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci 20:176–185CrossRefPubMedGoogle Scholar
  26. Yamagishi M (2011) Oriental hybrid lily Sorbonne homologue of LhMYB12 regulates anthocyanin biosyntheses in flower tepals and tepal spots. Mol Breed 28:381–389CrossRefGoogle Scholar
  27. Yamamoto H (1991) Biotechnology in agriculture and forestry. In: Bajaj YPS (ed) Medicinal and aromatic plants III. Springer, Berlin, pp 398–418Google Scholar
  28. Yuan Y, Wu C, Liu Y, Yang J, Huang L (2013) The Scutellaria baicalensis R2R3-MYB transcription factors modulates flavonoid biosynthesis by regulating GA metabolism in transgenic tobacco plants. PloS One 8:e77275CrossRefPubMedPubMedCentralGoogle Scholar
  29. Zhao L, Gao L, Wang H, Chen X, Wang Y, Yang H, Wei C, Wan X, Xia T (2013) The R2R3-MYB, bHLH, WD40, and related transcription factors in flavonoid biosynthesis. Funct Integr Genom 13:75–98CrossRefGoogle Scholar
  30. Zhao Q, Zhang Y, Wang G, Hill L, Weng JK, Chen XY, Xue H, Martin C (2016) A specialized flavone biosynthetic pathway has evolved in the medicinal plant, Scutellaria baicalensis. Sci Adv 2:e1501780CrossRefPubMedPubMedCentralGoogle Scholar
  31. Zhao H, Ren L, Fan X, Tang K, Li B (2017) Identification of putative flavonoid-biosynthetic genes through transcriptome analysis of Taihe Toona sinensis bud. Acta Physiol Plant 39:122CrossRefGoogle Scholar
  32. Zhao Q, Cui MY, Levsh O, Yang D, Liu J, Li J, Hill L, Yang L, Hu Y, Weng JK, Chen XY, Martin C (2018) Two CYP82D enzymes function as flavone hydroxylases in the biosynthesis of root-specific 4′-deoxyflavones in Scutellaria baicalensis. Mol Plant 11:135–148CrossRefPubMedPubMedCentralGoogle Scholar
  33. Zoratti L, Karppinen K, Escobar AL, Häggman H, Jaakola L (2014) Light-controlled flavonoid biosynthesis in fruits. Front Plant Sci 5:534CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2018

Authors and Affiliations

  1. 1.College of Life SciencesShaanxi Normal UniversityXi’anChina
  2. 2.National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of ChinaXi’anChina
  3. 3.Core Research Laboratory, The Second Affiliated Hospital, School of MedicineXi’an Jiaotong UniversityXi’anChina

Personalised recommendations