Relationship between ripening time and sugar content of apricot (Prunus armeniaca L.) kernels

  • Jelena Mesarović
  • Jelena Trifković
  • Tomislav Tosti
  • Milica Fotirić Akšić
  • Dragan Milatović
  • Vlado Ličina
  • Dušanka Milojković-OpsenicaEmail author
Original Article


Apricot seeds could be obtained as a byproduct in different juice or conserve producing industries. Disposal of large amount of apricot seeds is wasting of potentially precious sources of phytochemicals. This study encompassed apricot cultivars that have different origin and flowering time with the aim of providing valuable information about the sugar content in its kernels. High-performance anion-exchange chromatography with pulsed amperometric detection was used for the determination of 22 sugars in the kernels of 70 apricot cultivars. The most common sugars in the apricot kernels are sucrose, fructose, and glucose whose ratio proved to be ripening time dependent (1:1:1 in the early, 1:2:3 in medium and 1:3:3 in the late cultivars). The kernels of the apricot with shorter vegetation period had the highest sum of glucose and fructose compared to other groups. Other sugar components were present in different levels as minor constituents depending on the ripening time. Also, most common sugars and some low-level sugars were strongly correlated to each other, indicating the normal metabolic carbohydrate pathway. To understand the distribution modes of sugars, a principal component analysis was performed.


Apricot kernels High-performance anion-exchange chromatography with pulsed amperometric detection Pattern recognition method Ripening time of apricot Sugar profile 



The research is a part of the projects OI 172017 and TR 31063, funded by the Ministry of Education, Science and Technological Development of the Republic of Serbia.

Supplementary material

11738_2018_2731_MOESM1_ESM.docx (19 kb)
Supplementary material 1 (docx 18.731 KB)


  1. Akin EB, Karabulut I, Topcu A (2008) Some compositional properties of main Malatya apricot (Prunus armeniaca L.) varieties. Food Chem 107:939–948CrossRefGoogle Scholar
  2. Alpaslan M, Hayta M (2006) Apricot kernel: physical and chemical properties. J Am Oil Chem Soc 83:469–471CrossRefGoogle Scholar
  3. Amasino R (2010) Seasonal and developmental timing of flowering. Plant J 61:1001–1013CrossRefPubMedGoogle Scholar
  4. Audergon JM, Duffillol MJ, Souty M, Breuils L, Reich M (1991) Biochemical and physicochemical characterization of 400 apricot varieties. Consequences in the apricot selection and improvement process. Acta Hortic 293:111–120CrossRefGoogle Scholar
  5. Bassi D, Selli R (1990) Evaluation of fruit quality in peach and apricot. Adv Hortic Sci 4:107–112CrossRefGoogle Scholar
  6. Borsani J, Budde CO, Porrini L, Lauxmann MA, Lombardo VA, Murray R (2009) Carbon metabolism of peach fruit after harvest: changes in enzymes involved in organic acid and sugar level modifications. J Exp Bot 60:1823–1837CrossRefPubMedGoogle Scholar
  7. Cao SF, Yang ZF, Zheng YH (2013) Sugar metabolism in relation to chilling tolerance of loquat fruit. Food Chem 136:139–143CrossRefPubMedGoogle Scholar
  8. Couée I, Sulmon C, Gouesbet G, Amrani AE (2006) Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot 57:449–459CrossRefPubMedGoogle Scholar
  9. Dragovic-Uzelac V, Levaj B, Mrkic V, Bursac D, Boras M (2007) The content of polyphenols and carotenoids in three apricot cultivars depending on stage of maturity and geographical region. Food Chem 102:966–975CrossRefGoogle Scholar
  10. Drogoudi PD, Vemmos S, Pantedelis G, Petri E, Tzoutzoukou C, Karayannis I (2008) Physical characters and antioxidant, sugar, and mineral nutrient contents in fruit from 29 apricot (Prunus armeniaca L.) cultivars and hybrids. J Agric Food Chem 56:10754–10760CrossRefPubMedGoogle Scholar
  11. Ernst R, Arditti J (1990) Carbohydrate physiology of orchid seedlings III: Hydrolysis of maltooligosaccharides by Phalaenopsis (Orchidaceae) seedlings. Am J Bot 77:188–195CrossRefPubMedGoogle Scholar
  12. FAOSTAT (2014) Accessed 24 July 2017
  13. Fernandez O, Béthencourt L, Quero A, Sangwan RS, Clément C (2010) Trehalose and plant stress responses: friend or foe? Trends Plant Sci 15:409–417CrossRefPubMedGoogle Scholar
  14. Gechev TS, Hille J, Woerdenbag HJ, Benina M, Mehterov N, Toneva V, Fernie AR, Mueller-Roeber B (2014) Natural products from resurrection plants: potential for medical applications. Biotechnol Adv 32:1091–1101CrossRefPubMedGoogle Scholar
  15. Girgis AY, El-Aziz NM, El-Salam SM (1998) Physical and chemical characteristics of toilet soap made from apricot kernel oil and palm stearin. Grasas Aceites 49:434–439CrossRefGoogle Scholar
  16. Gómez E, Burgos L, Soriano C, Marin J (1998) Amygdalin content in the seeds of several apricot cultivars. J Sci Food Agric 77:184–186CrossRefGoogle Scholar
  17. Gurrieri F, Audergon JM, Albagnac G, Reich M (2001) Soluble sugars and carboxylic acids in ripe apricot fruit as parameters for distinguishing different cultivars. Euphytica 117:183–189CrossRefGoogle Scholar
  18. Halford NG, Curtis TY, Muttucumaru N, Postles J, Mottram DS (2011) Sugars in crop plants. Ann Appl Biol 158:1–25CrossRefGoogle Scholar
  19. Harb J, Alseekh S, Tohge T, Fernie AR (2015) Profiling of primary metabolites and flavonols in leaves of two table grape varieties collected from semiarid and temperate regions. Phytochemistry 117:444–455CrossRefPubMedGoogle Scholar
  20. Hegedűs A, Engel R, Abrankó L, Balogh E, Blázovics A, Hermán R, Halász J, Ercisli S, Pedryc A, Stefanovits-Bányai É (2010) Antioxidant and antiradical capacities in apricot (Prunus armeniaca L.) fruits: variations from genotypes, years and analytical methods. J Food Sci 75:C722–C730CrossRefPubMedGoogle Scholar
  21. Higashiyama T (2002) Novel functions and applications of trehalose. Pure Appl Chem 74:1263–1269CrossRefGoogle Scholar
  22. Hintze J (2001) Number cruncher statistical systems, Kaysville, UT. Accessed Dec 2017
  23. Kamel BS, Kakuda Y (1992) Characterization of the seed oil and meal from apricot, cherry, nectarine, peach and plum. J Am Oil Chem Soc 69:492–494CrossRefGoogle Scholar
  24. Korekar G, Stobdan T, Arora R, Yadav A, Singh SB (2011) Antioxidant capacity and phenolics content of apricot (Prunus armeniaca L.) kernel as a function of genotype. Plant Foods Hum Nutr 66:376–383CrossRefPubMedGoogle Scholar
  25. Králová K, Jampílek J, Ostrovský I (2012) Metabolomics—useful tool for study of plant responses to abiotic stresses. Ecol Chem Eng S 19:133–161Google Scholar
  26. Ledbetter C, Peterson S, Jenner J (2006) Modification of sugar profiles in California adapted apricots (Prunus armeniaca L.) through breeding with Central Asian germplasm. Euphytica 148:251–259CrossRefGoogle Scholar
  27. Li TSC (2009) Vegetables and fruits: nutritional and therapeutic values. CRC Press, Taylor & Francis Group, Boca RatonGoogle Scholar
  28. Loescher WH (1987) Physiology and metabolism of sugar alcohols in higher plants. Physiol Plant 70:553–557CrossRefGoogle Scholar
  29. Luber F, Demmel A, Hosken A, Busch U, Engel KH (2012) Apricot DNA as an indicator for persipan: detection and quantitation in marzipan using ligation-dependent probe amplification. J Agric Food Chem 60:5853–5858CrossRefPubMedGoogle Scholar
  30. Martinelli F, Remorinic D, Saiab S, Massaic R, Tonutti P (2013) Metabolic profiling of ripe olive fruit in response to moderate water stress. Sci Hortic 159:52–58CrossRefGoogle Scholar
  31. Meier U, Graf H, Hack H, Hess M, Kennel W, Klose R, Mappes D, Seipp D, Stauss R, Streif J, Van den Boom T (1994) Phänologische Entwick-lungsstadien des Kernobstes (Malus domestica Borkh. und Pyrus communis L.), des Steinobstes (Prunus-Arten), der Johannisbeere (Ribes-Arten) und der Erdbeere (Fragaria × ananassa Duch.). Nachrichtenbl Deut Pflanzenschutzd 46:141–153Google Scholar
  32. Milatović D, Đurović D, Milivojević J (2000) Tehnološke osobine koštica kajsije. Jugoslovensko voćarstvo 34:147–151Google Scholar
  33. Moore JP, Nguema-On EE, Vicre-Gibouin M, Sorensen I, Willats WG, Driouich A (2013) Arabinose-rich polymers as an evolutionary strategy to plasticize resurrection plant cell walls against desiccation. Planta 237:739–754CrossRefPubMedGoogle Scholar
  34. Munzuroglu O, Karatas F, Geckil H (2003) The vitamin and selenium contents of apricot fruit of different varieties cultivated in different geographical regions. Food Chem 83:205–212CrossRefGoogle Scholar
  35. Nigam P, Singh D (1994) Solid state (substrate) fermentation systems and their applications in biotechnology. J Basic Microbiol 34:405–414CrossRefGoogle Scholar
  36. Özcan MM, Özalp C, Ünver A, Arslan D, Dursun N (2010) Properties of apricot kernel and oils as fruit juice processing waste. Food Nutr Sci 1:31–37Google Scholar
  37. Patrick JW, Botha FC, Birch RG (2013) Metabolic engineering of sugars and simple sugar derivatives in plants. Plant Biotechnol J 11:142–156CrossRefPubMedGoogle Scholar
  38. Price J, Laxmi A, Martin SK, Jang JC (2004) Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis. Plant Cell 16:2128–2150CrossRefPubMedPubMedCentralGoogle Scholar
  39. Rolland F, Sheen J (2005) Sugar sensing and signaling networks in plants. Biochem Soc Trans 33:269–271CrossRefPubMedGoogle Scholar
  40. Rolland F, Moore B, Sheen J (2002) Sugar sensing and signaling in plants. Plant Cell 14(Suppl 1):185–205CrossRefGoogle Scholar
  41. Schmitzer V, Slatnar A, Mikulic-Petkovsek M, Veberic R, Krska B, Stampar F (2011) Comparative study of primary and secondary metabolites in apricot (Prunus armeniaca L.) cultivars. J Sci Food Agric 91:860–866CrossRefPubMedGoogle Scholar
  42. Sheen J, Zhou J, Jang JC (1999) Sugars as signaling molecules. Curr Opin Plant Biol 2:410–418CrossRefPubMedGoogle Scholar
  43. Smeekens S (2000) Sugar-induced signal transduction in plants. Annu Rev Plant Physiol Plant Mol Biol 51:49–81CrossRefPubMedGoogle Scholar
  44. Stanojević M, Trifković J, Fotirić Akšić M, Rakonjac V, Nikolić D, Šegan S, Milojković-Opsenica D (2015) Sugar profile of kernels as a marker of origin and ripening time of peach (Prunus persicae L.). Plant Foods Hum Nutr 70:433–440CrossRefPubMedGoogle Scholar
  45. Targais K, Stobdan T, Yadav A, Singh SB (2011) Extraction of apricot kernel oil in cold desert Ladakh, India. Ind J Tradit Knowl 10:304–306Google Scholar
  46. Tian H, Zhang H, Zhan P, Tian F (2011) Composition and antioxidant and antimicrobial activities of white apricot almond (Amygdalus communis L.) oil. Eur J Lipid Sci Technol 113:1138–1144CrossRefGoogle Scholar
  47. van Dijken AJ, Schluepmann H, Smeekens SC (2004) Arabidopsis trehalose-6-phosphate synthase 1 is essential for normal vegetative growth and transition to flowering. Plant Physiol 135:969–977CrossRefPubMedPubMedCentralGoogle Scholar
  48. Wang Z, Cao J, Jiang W (2016) Changes in sugar metabolism caused by exogenous oxalic acid related to chilling tolerance of apricot fruit. Postharvest Biol Biotechnol 114:10–16CrossRefGoogle Scholar
  49. Xue G-P, McIntyre CL, Glassop D, Shorter R (2008) Use of expression analysis to dissect alterations in carbohydrate metabolism in wheat leaves during drought stress. Plant Mol Biol 67:197–214CrossRefPubMedGoogle Scholar
  50. Yarilgac T, Bostan SZ, Karadeniz T, Balta MF (2008) Kernel sugar components of Turkish and foreign apricot (Prunus armeniaca L.) varieties. Asian J Chem 20:787–792Google Scholar
  51. Yiğit D, Yiğit N, Mavi A (2009) Antioxidant and antimicrobial activities of bitter and sweet apricot (Prunus armeniaca L.) kernels. Braz J Med Biol Res 42:346–352CrossRefPubMedGoogle Scholar
  52. Yildirim FA, Askin AM (2010) Variability of amygdalin content in seeds of sweet and bitter apricot cultivars in Turkey. Afr J Biotechnol 9:6522–6524Google Scholar
  53. Yıldırım FA, Yıldırım AN, Aşkın MA, Kankaya A (2010) Total oil, fatty acid composition and tocopherol content in kernels of several bitter and sweet apricot (Prunus armeniaca Batsch) cultivars from Turkey. J Food Agric Environ 8:196–201Google Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2018

Authors and Affiliations

  • Jelena Mesarović
    • 1
  • Jelena Trifković
    • 2
  • Tomislav Tosti
    • 2
  • Milica Fotirić Akšić
    • 3
  • Dragan Milatović
    • 3
  • Vlado Ličina
    • 3
  • Dušanka Milojković-Opsenica
    • 2
    Email author
  1. 1.Maize Research Institute ‘Zemun polje’BelgradeSerbia
  2. 2.Faculty of ChemistryUniversity of BelgradeBelgradeSerbia
  3. 3.Faculty of AgricultureUniversity of BelgradeBelgrade-ZemunSerbia

Personalised recommendations