Skip to main content

Advertisement

Log in

Effect of foliar spray of zinc on chloroplast β-carbonic anhydrase expression and enzyme activity in rice (Oryza sativa L.) leaves

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The β-carbonic anhydrase (β-CA) is regarded as a zinc-containing enzyme involved in photosynthesis. Here, the rice plants of cv. N22 were treated with foliar spray at a Zn2+ concentration range from 0–35.0 mM during the tillering stage. The β-CA expression in the treated leaves was quantitatively determined by RT-qPCR and gel-based immunoblotting techniques, and its enzyme activity and relative chlorophyll concentration were measured. Results indicated that exogenous zinc could benefit rice plants at the tillering stage, particularly chloroplast β-CA with a fourfold enhancement in gene expression and a 14.6 % increase in its activity by treating the rice leaves with the 7.0-mM Zn2+ concentration, thereby promoting photosynthesis by a 19.4 % increase in relative chlorophyll concentration per unit leaf area. Results also showed that the application of Zn2+ at a concentration exceeding 7.0 mM could result in leaf senescence, and in some cases leaf hurts with significant inactivation (decreasing by approximately 70 %) of β-CA enzyme. It could be concluded that the application of 7.0-mM Zn2+ benefits rice plants at the tillering stage. The β-CA activity was associated with the catalytic microenvironment, thus providing an indicator for physiological response to exogenous zinc in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AA:

Amino acid

CA:

Carbonic anhydrase

CBB:

Coomassie Brilliant Blue

CO2 :

Carbon dioxide

HCO3 :

Bicarbonate

MW:

Molecular weight

PEPC:

Phosphoenolpyruvate carboxylase

Rubisco:

Ribulose-1,5-bisphosphate carboxylase/oxygenase

SDS-PAGE:

Sodium dodecyl sulphate–polyacrylamide gel electrophoresis

RT-qPCR:

Quantitative real-time reverse transcriptase polymerase chain reaction

Zn2+ :

Zinc ion

References

  • Bashir K, Ishimaru Y, Nishizawa NK (2012) Molecular mechanisms of Zn uptake and translocation in rice. Plant Soil 361:189–201

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Braun HP, Zabaleta E (2007) Carbonic anhydrase subunits of the mitochondrial NADH dehydrogenase complex (complex I) in plants. Physiol Plantarum 129:114–122

    Article  CAS  Google Scholar 

  • Brownell PF, Bielig LM, Grof CPL (1991) Increased carbonic anhydrase activity in leaves of sodium-deficient C4 plants. Aust J Plant Physiol 18:589–592

    Article  CAS  Google Scholar 

  • Covarrubias AS, Larsson AM, Högbom M, Lindberg J, Bergfors T, Björkelid C, Mowbray SL, Unge T, Jones TA (2005) Structure and function of carbonic anhydrases from Mycobacterium tuberculosis. J Biol Chem 280:18782–18789

    Article  Google Scholar 

  • Fang W, Kao CH (2000) Enhanced peroxidase activity in rice leaves in response to excess iron, copper and Zn. Plant Sci 158:71–76

    Article  CAS  PubMed  Google Scholar 

  • Hacisalihoglu G, Hart JJ, Wang YH, Cakmak I, Kochian LV (2003) Zn efficiency is correlated with enhanced expression and activity of Zn-requiring enzymes in wheat. Plant Physiol 131:595–602

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hatch MD, Burnell JN (1990) Carbonic anhydrase activity in leaves and its role in the first step of C4 photosynthesis. Plant Physiol 93:825–828

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hayat S, Yadav S, Wani AS, Irfan M, Ahmad A (2011) Comparative effect of 28-homobrassinolide and 24-epibrassinolide on the growth, carbonic anhydrase activity and photosynthetic efficiency of Lycopersicon esculentum. Photosynthetica 49:397–404

    Article  CAS  Google Scholar 

  • He Y, Zhang Y, Wang S, Zeng H, Ding Y (2013) Characterization of a novel glutelin subunit osGluBX by the experimental approach and molecular dynamics simulations. Appl Biochem Biotech 169:1482–1496

    Article  CAS  Google Scholar 

  • Ignatova LK, Rudenko NN, Mudrik VA, Fedorchuk TP, Ivanov BN (2011) Carbonic anhydrase activity in Arabidopsis thaliana thylakoid membrane and fragments enriched with PSI or PSII. Photosynth Res 110:89–98

    Article  CAS  PubMed  Google Scholar 

  • Jagadish SVK, Craufurd PQ, Wheeler TR (2008) Phenotyping parents of mapping populations of rice for heat tolerance during anthesis. Crop Sci 48:1140–1146

    Article  Google Scholar 

  • Jagadish SVK, Muthurajan R, Oane R, Wheeler TR, Heuer S, Bennett J, Craufurd PQ (2010) Physiological and proteomic approaches to dissect reproductive stage heat tolerance in rice (Oryza sativa L.). J Exp Bot 61:143–156

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Struik PC, Keulen HV, Zhao M, Stomph TJ (2008) Does increased Zn uptake enhance grain Zn mass concentration in rice? Ann Appl Biol 153:135–147

    Article  CAS  Google Scholar 

  • Johansson I, Forsman C (1992) Processing of the chloroplast transit peptide of pea carbonic anhydrase in chloroplasts and in Escherichia coli identification of two cleavage sites. FEBS Lett 314:232–236

    Article  CAS  PubMed  Google Scholar 

  • Kaul T, Reddy PS, Mahanty S, Thirulogachandar V, Reddy RA, Kumar B, Sopory SK, Reddy MK (2011) Biochemical and molecular characterization of stress-induced β-carbonic anhydrase from a C4 plant, Pennisetum glaucum. J Plant Physiol 168:601–610

    Article  CAS  PubMed  Google Scholar 

  • Kimber MS, Pai EF (2000) The active site architecture of Pisum sativum β-carbonic anhydrase is a mirror image of that of α-carbonic anhydrases. EMBO J 19:1407–1418

    Article  CAS  PubMed  Google Scholar 

  • Ling Q, Huang W, Jarvis P (2011) Use of a SPAD-502 meter to measure leaf chlorophyll concentration in Arabidopsis thaliana. Photosynth Res 107:209–214

    Article  CAS  PubMed  Google Scholar 

  • Long BM, Rae BD, Badger MR, Price GD (2011) Over-expression of the β-carboxysomal CcmM protein in Synechococcus PCC7942 reveals a tight co-regulation of carboxysomal carbonic anhydrase (CcaA) and M58 content. Photosynth Res 109:33–45

    Article  CAS  PubMed  Google Scholar 

  • Ludwig M (2011) The molecular evolution of β-carbonic anhydrase in Flaveria. J Exp Bot 62:3071–3081

    Article  CAS  PubMed  Google Scholar 

  • Ludwig M (2012) Carbonic anhydrase and the molecular evolution of C4 photosynthesis. Plant Cell Environ 35:22–37

    Article  CAS  PubMed  Google Scholar 

  • Martin V, Villarreal F, Miras I, Navaza A, Haouz A, González-Lebrero RM, Kaufman SB, Zabaleta E (2009) Recombinant plant gamma carbonic anhydrase homotrimers bind inorganic carbon. FEBS Lett 583:3425–3430

    Article  CAS  PubMed  Google Scholar 

  • Mitsuhashi S, Mizushima T, Yamashita E, Yamamotoi M, Kumasakai T, Moriyama H, Ueki T, Miyachi S, Tsukihara T (2000) X-ray structure of β-carbonic anhydrase from the red alga, Porphyridium purpureum, reveals a novel catalytic site for CO2 hydration. J Biol Chem 275:5521–5526

    Article  CAS  PubMed  Google Scholar 

  • Moroney JV, Ma Y, Frey WD, Fusilier KA, Pham TT, Simms TA, DiMario RJ, Yang J, Mukherjee B (2011) The carbonic anhydrase isoforms of Chlamydomonas reinhardtii: intracellular location, expression, and physiological roles. Photosynth Res 109:133–149

    Article  CAS  PubMed  Google Scholar 

  • Park H, Song B, Morel FM (2007) Diversity of the cadmium-containing carbonic anhydrase in marine diatoms and natural waters. Environ Microbiol 9:403–413

    Article  CAS  PubMed  Google Scholar 

  • Phattarakul N, Rerkasem B, Li LJ, Wu LH, Zou CQ, Ram H, Sohu VS, Kang BS, Surek H, Kalayci M, Yazici A, Zhang FS, Cakmak I (2012) Biofortification of rice grain with zinc through zinc fertilization in different countries. Plant Soil 361:131–141

    Article  CAS  Google Scholar 

  • Rehman H, Aziz T, Farooq M, Wakeel A, Rengel Z (2012) Zn nutrition in rice production systems: a review. Plant Soil 361:203–226

    Article  CAS  Google Scholar 

  • Reynolds M, Bonnett D, Chapman SC, Furbank RT, Manès Y, Mathe DE, Parry MA (2010) Raising yield potential of wheat. I. Overview of a consortium approach and breeding strategies. J Exp Bot 62:439–452

    Article  PubMed  Google Scholar 

  • Riazunnisa K, Padmavathi L, Bauwe H, Raghavendra AS (2006) Markedly low requirement of added CO2 for photosynthesis by mesophyll protoplasts of pea (Pisum sativum): possible roles of photorespiratory CO2 and carbonic anhydrase. Physiol Plantarum 128:763–772

    Article  CAS  Google Scholar 

  • Rowlett RS (2010) Structure and catalytic mechanism of the β-carbonic anhydrases. BBA-Proteins Proteom 1804:362–373

    Article  CAS  Google Scholar 

  • Sagardoy R, Morales F, López-Millán AF, Abadía A, Abadía J (2009) Effects of zinc toxicity on sugar beet (Beta vulgaris L.) plants grown in hydroponics. Plant Biology 11:339–350

    Article  CAS  PubMed  Google Scholar 

  • Sagardoy R, Vázquez S, Florez-Sarasa ID, Albacete A, Ribas-Carbó M, Flexas J, Abadía J, Morales F (2010) Stomatal and mesophyll conductances to CO2 are the main limitations to photosynthesis in sugar beet (Beta vulgaris) plants grown with excess zinc. New Phytol 187:145–158

    Article  CAS  PubMed  Google Scholar 

  • Sasaki H, Hirose T, Watanabe Y, Ohsugi R (1998) Carbonic anhydrase activity and CO2-transfer resistance in Zn-deficient rice leaves. Plant Physiol 118:929–934

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • So AK, Espie GS (2005) Cyanobacterial carbonic anhydrases. Can J Bot 83:721–734

    Article  CAS  Google Scholar 

  • Tanz SK, Tetu SG, Vella NG, Ludwig M (2009) Loss of the transit peptide and an increase in gene expression of an ancestral chloroplastic carbonic anhydrase were instrumental in the evolution of the cytosolic C4 carbonic anhydrase in Flaveria. Plant Physiol 150:1515–1529

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tavallali V, Rahemi M, Maftoun M, Panahi B, Karimi S, Ramezanian A, Vaezpour M (2009) Zn influence and salt stress on photosynthesis, water relations, and carbonic anhydrase activity in pistachio. Sci Hortic 123:272–279

    Article  CAS  Google Scholar 

  • Tems U, Burnell JN (2010) Characterization and expression of the maize-carbonic anhydrase gene repeat regions. Plant Physiol Bioch 48:945–951

    Article  CAS  Google Scholar 

  • Tetu SG, Tanz SK, Vella N, Burnell JN, Ludwig M (2007) The Flaveria bidentis β-carbonic anhydrase gene family encodes cytosolic and chloroplastic isoforms demonstrating distinct organ-specific expression patterns. Plant Physiol 144:1316–1327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang H, Liu RL, Jin JY (2009) Effects of Zn and soil moisture on photosynthetic rate and chlorophyll fluorescence parameters of maize. Biol Plantarum 53:191–194

    Article  CAS  Google Scholar 

  • Wilbur KM, Anderson NG (1948) Electrometric and colorimetric determination of carbonic anhydrase. J Biol Chem 176:147–154

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Grant No. 31371600), the Hubei Province Natural Science Foundation (2011CDB142), and the key project of Hubei Province Natural Science Foundation (2012DBA03001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanlai Zeng.

Additional information

Communicated by Z. Miszalski.

X. Qiao and Y. He contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiao, X., He, Y., Wang, Z. et al. Effect of foliar spray of zinc on chloroplast β-carbonic anhydrase expression and enzyme activity in rice (Oryza sativa L.) leaves. Acta Physiol Plant 36, 263–272 (2014). https://doi.org/10.1007/s11738-013-1407-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-013-1407-6

Keywords

Navigation