Frontiers of Structural and Civil Engineering

, Volume 13, Issue 2, pp 294–302 | Cite as

A modified pulse charging method for lithium-ion batteries by considering stress evolution, charging time and capacity utilization

  • Yanfei Zhao
  • Bo LuEmail author
  • Yicheng Song
  • Junqian Zhang
Research Article


The stress evolution, total charging time and capacity utilization of pulse charging (PC) method are investigated in this paper. It is found that compared to the conventional constant current (CC) charging method, the PC method can accelerate the charging process but will inevitably cause an increase in stress and a decrease in capacity. The charging speed for PC method can be estimated by the mean current. By introducing stress control, a modified PC method called the PCCC method, which starts with a PC operation followed by a CC operation, is proposed. The PCCC method not only can accelerate charging process but also can avoid the stress raising and capacity loss occurring in the PC method. Furthermore, the optimal pulsed current density and switch time in the PCCC method is also discussed.


fast charging method pulse charging stress evolution charging time capacity utilization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This project was supported by the National Natural Science Foundation of China (Grant Nos. 11702166, 11332005, and 11702164), the Shanghai Municipal Education Commission (No. 13ZZ070), the Shanghai Sailing Program (No. 17YF1606000) and the Science and Technology Commission of Shanghai Municipality (No. 14DZ2261200).


  1. 1.
    Anseán D, González M, Viera J C, García V M, Blanco C, Valledor M. Fast charging technique for high power lithium iron phosphate batteries: a cycle life analysis. Journal of Power Sources, 2013, 239: 9–15CrossRefGoogle Scholar
  2. 2.
    Wang D, Wu X, Wang Z, Chen L. Cracking causing cyclic instability of LiFePO4 cathode material. Journal of Power Sources, 2005, 140(1): 125–128CrossRefGoogle Scholar
  3. 3.
    Vetter J, Novák P, Wagner M R, Veit C, Möller K C, Besenhard J O, Winter M, Wohlfahrt-Mehrens M, Vogler C, Hammouche A. Ageing mechanisms in lithium-ion batteries. Journal of Power Sources, 2005, 147(1–2): 269–281CrossRefGoogle Scholar
  4. 4.
    Schmidt A P, Bitzer M, Imre Á W, Guzzella L. Model-based distinction and quantification of capacity loss and rate capability fade in Li-ion batteries. Journal of Power Sources, 2010, 195(22): 7634–7638CrossRefGoogle Scholar
  5. 5.
    Li J, Murphy E, Winnick J, Kohl P A. The effects of pulse charging on cycling characteristics of commercial lithium-ion batteries. Journal of Power Sources, 2001, 102(1–2): 302–309CrossRefGoogle Scholar
  6. 6.
    de Jongh P E, Notten P H L. Effect of current pulses on lithium intercalation batteries. Solid State Ionics, 2002, 148(3–4): 259–268CrossRefGoogle Scholar
  7. 7.
    Purushothaman B K, Landau U. Rapid charging of lithium-ion batteries using pulsed currents: a theoretical analysis. Journal of the Electrochemical Society, 2006, 153(3): A533–A542CrossRefGoogle Scholar
  8. 8.
    Savoye F, Venet P, Millet M, Groot J. Impact of periodic current pulses on Li-ion battery performance. IEEE Transactions on Industrial Electronics, 2012, 59(9): 3481–3488CrossRefGoogle Scholar
  9. 9.
    Beh H Z Z, Covic G A, Boys J T. Effects of pulse and DC charging on lithium iron phosphate (LiFePO4) batteries. In: IEEE Energy Conversion Congress and Exposition. Denver: IEEE, 2013, 315–320Google Scholar
  10. 10.
    Purushothaman B K, Morrison P W Jr, Landau U. Reducing masstransport limitations by application of special pulsed current modes. Journal of the Electrochemical Society, 2005, 152(4): J33–J39CrossRefGoogle Scholar
  11. 11.
    Keil P, Jossen A. Charging protocols for lithium-ion batteries and their impact on cycle life—An experimental study with different 18650 high-power cells. Journal of Energy Storage, 2016, 6: 125–141CrossRefGoogle Scholar
  12. 12.
    Song Y, Shao X, Guo Z, Zhang J. Role of material properties and mechanical constraint on stress-assisted diffusion in plate electrodes of lithium ion batteries. Journal of Physics. D, Applied Physics, 2013, 46(10): 105307CrossRefGoogle Scholar
  13. 13.
    Zhang X, Shyy W, Marie Sastry A. Numerical simulation of intercalation-induced stress in li-ion battery electrode particles. Journal of the Electrochemical Society, 2007, 154(10): A910–A916CrossRefGoogle Scholar
  14. 14.
    Taheri P, Hsieh S, Bahrami M. Investigating electrical contact resistance losses in lithium-ion battery assemblies for hybrid and electric vehicles. Journal of Power Sources, 2011, 196(15): 6525–6533CrossRefGoogle Scholar
  15. 15.
    Lu B, Song Y, Zhang Q, Pan J, Cheng Y T, Zhang J. Voltage hysteresis of lithium ion batteries caused by mechanical stress. Physical Chemistry Chemical Physics, 2016, 18(6): 4721–4727CrossRefGoogle Scholar
  16. 16.
    Bucci G, Swamy T, Bishop S, Sheldon BW, Chiang Y M, Carter W C. The effect of stress on battery-electrode capacity. Journal of the Electrochemical Society, 2017, 164(4): A645–A654CrossRefGoogle Scholar
  17. 17.
    Deshpande R, Verbrugge M, Cheng Y T, Wang J, Liu P. Battery cycle life prediction with coupled chemical degradation and fatigue mechanics. Journal of the Electrochemical Society, 2012, 159(10): A1730–A1738CrossRefGoogle Scholar
  18. 18.
    Xu J, Deshpande R D, Pan J, Cheng Y T, Battaglia V S. Electrode side reactions, capacity loss and mechanical degradation in lithiumion batteries. Journal of the Electrochemical Society, 2015, 162(10): A2026–A2035CrossRefGoogle Scholar
  19. 19.
    Barai P, Smith K, Chen C F, Kim G H, Mukherjee P P. Reduced order modeling of mechanical degradation induced performance decay in lithium-ion battery porous electrodes. Journal of the Electrochemical Society, 2015, 162(9): A1751–A1771CrossRefGoogle Scholar
  20. 20.
    Cheng Y T, Verbrugge M W. Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation. Journal of Power Sources, 2009, 190(2): 453–460CrossRefGoogle Scholar
  21. 21.
    Zhang J, Lu B, Song Y, Ji X. Diffusion induced stress in layered Liion battery electrode plates. Journal of Power Sources, 2012, 209: 220–227CrossRefGoogle Scholar
  22. 22.
    Lu B, Song Y, Zhang J. Selection of charge methods for lithium ion batteries by considering diffusion induced stress and charge time. Journal of Power Sources, 2016, 320: 104–110CrossRefGoogle Scholar
  23. 23.
    Crank J. The Mathematics of Diffusion. Oxford University Press, 1979zbMATHGoogle Scholar
  24. 24.
    Zhang S, Zhao K, Zhu T, Li J. Electrochemomechanical degradation of high-capacity battery electrode materials. Progress in Materials Science, 2017, 89: 479–521CrossRefGoogle Scholar
  25. 25.
    Lu B, Song Y, Guo Z, Zhang J. Modeling of progressive delamination in a thin film driven by diffusion-induced stresses. International Journal of Solids and Structures, 2013, 50(14–15): 2495–2507CrossRefGoogle Scholar
  26. 26.
    Lu B, Zhao Y, Song Y, Zhang J. Analytical model on lithiationinduced interfacial debonding of an active layer from a rigid substrate. Journal of Applied Mechanics, 2016, 83(12): 121009CrossRefGoogle Scholar
  27. 27.
    Hu S, Liang Z, He X. Hybrid sinusoidal-pulse charging method for the Li-ion batteries in electric vehicle applications based on AC impedance analysis. Journal of Power Electronics, 2016, 16(1): 268–276CrossRefGoogle Scholar
  28. 28.
    Vo T T, Chen X, Shen W, Kapoor A. New charging strategy for lithium-ion batteries based on the integration of Taguchi method and state of charge estimation. Journal of Power Sources, 2015, 273: 413–422CrossRefGoogle Scholar
  29. 29.
    Qi Y, Hector L G Jr, James C, Kim K J. Lithium concentration dependent elastic properties of battery electrode materials from first principles calculations. Journal of the Electrochemical Society, 2014, 161(11): F3010–F3018CrossRefGoogle Scholar
  30. 30.
    Hasan M F, Chen C F, Shaffer C E, Mukherjee P P. Analysis of the implications of rapid charging on lithium-ion battery performance. Journal of the Electrochemical Society, 2015, 162(7): A1382–A1395CrossRefGoogle Scholar
  31. 31.
    Shirazi A H N, Mohebbi F, Kakavand M R A, He B, Rabczuk T. Paraffin nanocomposites for heat management of lithium-ion batteries: a computational investigation. Journal of Nanomaterials, 2016, 2016: 2131946CrossRefGoogle Scholar
  32. 32.
    Mortazavi B, Yang H, Mohebbi F, Cuniberti G, Rabczuk T. Graphene or h-BN paraffin composite structures for the thermal management of Li-ion batteries: a multiscale investigation. Applied Energy, 2017, 202: 323–334CrossRefGoogle Scholar
  33. 33.
    Safari M, Morcrette M, Teyssot A, Delacourt C. Life-prediction methods for lithium-ion batteries derived from a fatigue approach I. Introduction: capacity-loss prediction based on damage accumulation. Journal of the Electrochemical Society, 2010, 157(6): A713–A720CrossRefGoogle Scholar
  34. 34.
    Safari M, Morcrette M, Teyssot A, Delacourt C. Life prediction methods for lithium-ion batteries derived from a fatigue approach II. Capacity-loss prediction of batteries subjected to complex current profiles. Journal of the Electrochemical Society, 2010, 157(7): A892–A898CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yanfei Zhao
    • 1
    • 2
    • 3
  • Bo Lu
    • 1
    • 4
    Email author
  • Yicheng Song
    • 4
    • 5
  • Junqian Zhang
    • 3
    • 4
    • 5
  1. 1.Shanghai Institute of Applied Mathematics and MechanicsShanghai UniversityShanghaiChina
  2. 2.Department of Civil EngineeringShanghai UniversityShanghaiChina
  3. 3.Materials Genome InstituteShanghai UniversityShanghaiChina
  4. 4.Shanghai Key Laboratory of Mechanics in Energy EngineeringShanghai UniversityShanghaiChina
  5. 5.Department of MechanicsShanghai UniversityShanghaiChina

Personalised recommendations